Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras

被引:29
|
作者
Adashev, J. K. [1 ]
Camacho, L. M. [2 ]
Omirov, B. A. [1 ]
机构
[1] Natl Univ Uzbekistan, Inst Math, Tashkent 100125, Uzbekistan
[2] Univ Seville, Dept Matemat Aplicada 1, Avda Reina Mercedes S-N, E-41012 Seville, Spain
关键词
Leibniz algebra; Filiform algebra; Quasi-filiform algebra; Natural gradation; Characteristic sequence; 2-cocycles; Central extension;
D O I
10.1016/j.jalgebra.2017.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified. Moreover, non-split central extensions of naturally graded filiform non-Lie Leibniz algebras are described up to isomorphism. It is shown that k-dimensional central extensions (k >= 5) of these algebras are split. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:461 / 486
页数:26
相关论文
共 50 条
  • [31] Central extensions of filiform associative algebras
    Karimjanov, Iqboljon
    Kaygorodov, Ivan
    Ladra, Manuel
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (06): : 1083 - 1101
  • [32] Central extensions of filiform Zinbiel algebras
    Camacho, Luisa M.
    Karimjanov, Iqboljon
    Kaygorodov, Ivan
    Khudoyberdiyev, Abror
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1479 - 1495
  • [33] Solvable extensions of the naturally graded quasi-filiform Leibniz algebra of second type
    Shabanskaya, A.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 490 - 507
  • [34] On certain graded representations of filiform Lie algebras
    Bernik, Janez
    Sivic, Klemen
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (11): : 2305 - 2327
  • [35] Filiform N-graded Lie algebras
    Millionshchikov, DV
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (02) : 422 - 424
  • [36] ON LIE-LIKE COMPLEX FILIFORM LEIBNIZ ALGEBRAS
    Omirov, B. A.
    Rakhimov, I. S.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (03) : 391 - 404
  • [37] c-Graded filiform Lie algebras
    Echarte, FJ
    Márquez, MC
    Núñez, J
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2005, 36 (01): : 59 - 77
  • [38] c-Graded filiform Lie algebras
    F. J. Echarte
    M. C. Márquez
    J. Núñez
    Bulletin of the Brazilian Mathematical Society, 2005, 36 : 59 - 77
  • [39] Naturally graded p-filiform Lie algebras in arbitrary finite dimension
    Cabezas, JM
    Pastor, E
    JOURNAL OF LIE THEORY, 2005, 15 (02) : 379 - 391
  • [40] MAXIMAL SOLVABLE EXTENSION OF NATURALLY GRADED FILIFORM n-LIE ALGEBRAS
    Abdurasulov, K. K.
    Gaybullaev, R. K.
    Omirov, B. A.
    Khudoyberdiyev, A. Kh
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (01) : 1 - 18