Speed-up of computing time for numerical analysis of particle charging process by using discrete element method

被引:23
|
作者
Mio, Hiroshi [1 ,2 ]
Akashi, Masatoshi [3 ]
Shimosaka, Atsuko [3 ]
Shirakawa, Yoshiyuki [3 ]
Hidaka, Jusuke [3 ]
Matsuzaki, Shinroku [4 ]
机构
[1] Keihanna Interact Plaza Inc, Kyoto Fine Particle Technol, Kyoto 6190237, Japan
[2] Doshisha Univ, Adv Sci & Technol Res Ctr, Kyoto 6100321, Japan
[3] Doshisha Univ, Dept Chem Engn & Mat Sci, Kyoto 6100321, Japan
[4] Nippon Steel Corp Ltd, Environm & Proc Technol Ctr, Chiba 2938511, Japan
基金
日本科学技术振兴机构;
关键词
Granular materials; Packed bed; Powder technology; Simulation; Discrete element method; Speed-up; CONTACT DETECTION; BLAST-FURNACE; FLUIDIZED-BEDS; DEM; SIMULATION; FLOW; GAS; SEGREGATION; ALGORITHM; BEHAVIOR;
D O I
10.1016/j.ces.2008.10.064
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The objective of this paper is to improve the computing time for numerical analysis of particle charging process by using discrete element method. The rule for ignoring the calculations of contact forces and updating trajectories of unmoved particles were discussed. When the relative displacement of a particle within certain calculation steps became less than 0.1% of particle radius, this particle was determined to be unmoved and the calculations of this particle were ignored. The computing time was improved significantly when this new method was used, and its calculation speed was more than two times faster than that of original. It was found that this speed-up method is more useful for the cases that the particle becomes unmoved in short time or the height of charged bed is large. The simulation of charging process in an industrial-scale surge hopper was studied by using new method, the calculation speed became 2.88 times faster than that of original, and the quite similar particle size segregation between original and new methods was given. This new method for speed-up of the charging process in DEM is very useful, and the charging processes of the industrial scale storages can be simulated by using this method. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1019 / 1026
页数:8
相关论文
共 50 条
  • [31] Analysis of particle motion in a paddle mixer using Discrete Element Method (DEM)
    Hassanpour, Ali
    Tan, Hongsing
    Bayly, Andrew
    Gopalkrishnan, Prasad
    Ng, Boonho
    Ghadiri, Mojtaba
    POWDER TECHNOLOGY, 2011, 206 (1-2) : 189 - 194
  • [32] Screen simulation using a particle discrete element method
    Jiao, Hong-Guang
    Zhao, Yue-Min
    Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 2007, 36 (02): : 232 - 236
  • [33] Numerical Investigation of a Continuous Screening Process by the Discrete Element Method
    Kruggel-Emden, Harald
    Elskamp, Frederik
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [34] Time and space multiscale numerical method by coupling discrete element method and finite element method
    Zhang, Rui
    Tang, Zhi-Ping
    Zheng, Hang
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2009, 39 (02): : 408 - 412
  • [35] Numerical Study Using Discrete Element Method about Coke Particle Behavior in Cohesive Zone
    Kim, Sun Young
    Sasaki, Yasushi
    ISIJ INTERNATIONAL, 2013, 53 (12) : 2028 - 2037
  • [36] Numerical simulation of dry particle coating processes by the discrete element method
    Dave, R
    Chen, WL
    Mujumdar, A
    Wang, WQ
    Pfeffer, R
    ADVANCED POWDER TECHNOLOGY, 2003, 14 (04) : 449 - 470
  • [37] A NUMERICAL STUDY ON THE SENSITIVITY OF THE DISCRETE ELEMENT METHOD: THE MULTI PARTICLE PERSPECTIVE
    Kruggel-Emden, Harald
    Rickelt, Stefan
    Wirtz, Siegmar
    Scherer, Viktor
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 4, 2009, : 111 - 121
  • [38] Numerical analysis of internal stability of granular materials using discrete element method
    Hama, N. Abdoulaye
    Ouahbi, T.
    Taibi, S.
    Fleureau, J. M.
    Pantet, A.
    Souli, H.
    GEOMECHANICS FROM MICRO TO MACRO, VOLS I AND II, 2015, : 527 - 531
  • [39] Computing periodic request functions to speed-up the analysis of non-cyclic task models
    Haibo Zeng
    Marco Di Natale
    Real-Time Systems, 2015, 51 : 360 - 394
  • [40] Computing periodic request functions to speed-up the analysis of non-cyclic task models
    Zeng, Haibo
    Di Natale, Marco
    REAL-TIME SYSTEMS, 2015, 51 (04) : 360 - 394