Topological quantum computation

被引:0
|
作者
Das Sarma, Sankar [1 ]
Freedman, Michael
Nayak, Chetan
机构
[1] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[2] Univ Calif Santa Barbara, Microsoft Project Q, Santa Barbara, CA 93106 USA
[3] Univ Calif Los Angeles, Microsoft Project Q, Los Angeles, CA 90024 USA
[4] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The search for a large-scale, error-free quantum computer is reaching an intellectual-junction at which semiconductor physics, knot theory, string theory, anyons, and quantum Hall-effetts are all coming together to produce quantum immunity.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 50 条
  • [31] Braid matrices and quantum gates for Ising anyons topological quantum computation
    Fan, Z.
    de Garis, H.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 74 (03): : 419 - 427
  • [32] Quantum origami: Transversal gates for quantum computation and measurement of topological order
    Zhu, Guanyu
    Hafezi, Mohammad
    Barkeshli, Maissam
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [33] Parafermions in a Kagome Lattice of Qubits for Topological Quantum Computation
    Hutter, Adrian
    Wootton, James R.
    Loss, Daniel
    PHYSICAL REVIEW X, 2015, 5 (04):
  • [34] Topological quantum computation based on chiral Majorana fermions
    Lian, Biao
    Sun, Xiao-Qi
    Vaezi, Abolhassan
    Qi, Xiao-Liang
    Zhang, Shou-Cheng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (43) : 10938 - 10942
  • [35] Blind topological measurement-based quantum computation
    Tomoyuki Morimae
    Keisuke Fujii
    Nature Communications, 3
  • [36] Introduction to topological quantum computation by J. Pachos
    Zhenghan Wang
    Quantum Information Processing, 2012, 11 (6) : 1969 - 1973
  • [37] Hamming Distance Kernelisation via Topological Quantum Computation
    Di Pierro, Alessandra
    Mengoni, Riccardo
    Nagarajan, Rajagopal
    Windridge, David
    THEORY AND PRACTICE OF NATURAL COMPUTING, TPNC 2017, 2017, 10687 : 269 - 280
  • [38] Topological and holonomic quantum computation based on second-order topological superconductors
    Zhang, Song-Bo
    Rui, W. B.
    Calzona, Alessio
    Choi, Sang-Jun
    Schnyder, Andreas P.
    Trauzettel, Bjorn
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [39] Quantum computation via Floquet topological edge modes
    Bomantara, Raditya Weda
    Gong, Jiangbin
    PHYSICAL REVIEW B, 2018, 98 (16)
  • [40] Blind topological measurement-based quantum computation
    Morimae, Tomoyuki
    Fujii, Keisuke
    NATURE COMMUNICATIONS, 2012, 3