Thermodynamics of light management in photovoltaic devices

被引:156
|
作者
Rau, Uwe [1 ]
Paetzold, Ulrich W. [1 ]
Kirchartz, Thomas [1 ,2 ,3 ]
机构
[1] Forschungszentrum Julich, Photovolta IEK5, D-52425 Julich, Germany
[2] Univ Duisburg Essen, Fac Engn, D-47057 Duisburg, Germany
[3] Univ Duisburg Essen, CENIDE, D-47057 Duisburg, Germany
关键词
LUMINESCENT SOLAR CONCENTRATORS; OPEN-CIRCUIT VOLTAGE; LIMITING EFFICIENCIES; PHOTON MANAGEMENT; FUNDAMENTAL LIMIT; ENERGY-CONVERSION; IDEAL SINGLE; CELLS; ELECTROLUMINESCENCE; PLASMONICS;
D O I
10.1103/PhysRevB.90.035211
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper elaborates a comprehensive theory of the thermodynamics of light management in solar cells explicitly considering imperfect light trapping, parasitic absorption and nonradiative recombination losses. A quantitative description of the entropic losses that reduce the open-circuit voltage and the energy conversion efficiency from the radiative limit towards realistic situations is presented. The theory embraces the fundamental limits for idealized solar cell devices given by the Yablonovitch limit and the Shockley-Queisser limit. We discriminate between reversible and irreversible entropic loss processes for four fundamental light management concepts: (i) conventional light trapping as an integral part of the device, (ii) geometric concentration of incident light, (iii) angular restriction of incoming and outgoing light, and (iv) light concentration by luminescent solar collectors. Based on this discrimination, a comprehensive discussion of the interplay between the loss processes and light management is presented. As part of this analysis, a new figure of merit for efficient light trapping in solar cells is introduced as well as an example of a deterministic light trapping concept which induces almost optimal light trapping.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Superhydrophobic Lotus Leaf Structured Foils for Light Management and Self-cleaning in Photovoltaic Devices
    Yoo, D.
    Garud, S.
    Amkreutz, D.
    Becker, C.
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 719 - 721
  • [12] Modelling Supported Design of Light Management Structures in Ultra-Thin Cigs Photovoltaic Devices
    Kovacic, M.
    Krc, J.
    Lipovsek, B.
    Chen, W-C
    Edoff, M.
    Bolt, P. J.
    van Deelen, J.
    Zhukova, M.
    Lontchi, J.
    Flandre, D.
    Salome
    Topic, M.
    INFORMACIJE MIDEM-JOURNAL OF MICROELECTRONICS ELECTRONIC COMPONENTS AND MATERIALS, 2019, 49 (03): : 183 - 190
  • [13] Light intensity dependence of the photocurrent in organic photovoltaic devices
    Zeiske, Stefan
    Li, Wei
    Meredith, Paul
    Armin, Ardalan
    Sandberg, Oskar J.
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (10):
  • [14] Silicon Nanostructures For Efficient Light Absorption In Photovoltaic Devices
    Treideris, Marius
    Bukauskas, Virginijus
    Reza, Alfonsas
    Simkiene, Irena
    Setkus, Arunas
    Maneikis, Andrius
    MATERIALS SCIENCE-MEDZIAGOTYRA, 2014, 20 (02): : 144 - 146
  • [15] Light sources of solar simulators for photovoltaic devices: A review
    Esen, Vedat
    Saglam, Safak
    Oral, Bulent
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 77 : 1240 - 1250
  • [16] Organic materials for photovoltaic and light-emitting devices
    T. A. Yourre
    L. I. Rudaya
    N. V. Klimova
    V. V. Shamanin
    Semiconductors, 2003, 37 : 807 - 815
  • [17] Plasmonic nanostructures for light trapping in organic photovoltaic devices
    Chou, Chun-Hsien
    Chen, Fang-Chung
    NANOSCALE, 2014, 6 (15) : 8444 - 8458
  • [18] Organic materials for photovoltaic and light-emitting devices
    Yourre, TA
    Rudaya, LI
    Klimova, NV
    Shamanin, VV
    SEMICONDUCTORS, 2003, 37 (07) : 807 - 815
  • [19] Spatial distribution of light absorption in organic photovoltaic devices
    Gruber, DP
    Meinhardt, G
    Papousek, W
    SOLAR ENERGY, 2005, 79 (06) : 697 - 704
  • [20] Power Management Using Photovoltaic Cells for Implantable Devices
    Htet, Kaung O. O.
    Ghannam, Rami
    Abbasi, Qammer H.
    Heidari, Hadi
    IEEE ACCESS, 2018, 6 : 42156 - 42164