Supersaturated bridge-sulfur and vanadium co-doped MoS2 nanosheet arrays with enhanced sodium storage capability

被引:47
|
作者
Dong, Yuru [1 ]
Zhu, Zhengju [1 ]
Hu, Yanjie [1 ]
He, Guanjie [2 ]
Sun, Yue [1 ]
Cheng, Qilin [1 ]
Parkin, Ivan P. [2 ]
Jiang, Hao [1 ]
机构
[1] East China Univ Sci & Technol, Shanghai Engn Res Ctr Hierarch Nanomat, Sch Mat Sci & Engn, Key Lab Ultrafine Mat,Minist Educ, Shanghai 200237, Peoples R China
[2] UCL, Dept Chem, Christopher Ingold Lab, 20 Gordon St, London WC1H 0AJ, England
基金
中国国家自然科学基金;
关键词
MoS2; bridge-sulfur; high specific capacity; sodium-ion battery; cycle life; ION BATTERIES; GRAPHENE; LITHIUM; NANOFLOWERS; EVOLUTION;
D O I
10.1007/s12274-020-3044-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low specific capacity and sluggish electrochemical reaction kinetics greatly block the development of sodium-ion batteries (SIBs). New high-performance electrode materials will enhance development and are urgently required for SIBs. Herein, we report the preparation of supersaturated bridge-sulfur and vanadium co-doped MoS(2)nanosheet arrays on carbon cloth (denoted as V-MoS2+x/CC). The bridge-sulfur in MoS(2)has been created as a new active site for greater Na(+)storage. The vanadium doping increases the density of carriers and facilitates accelerated electron transfer. The synergistic dual-doping effects endow the V-MoS2+x/CC anodes with high sodium storage performance. The optimized V-MoS2.49/CC gives superhigh capacities of 370 and 214 mAh.g(-1)at 0.1 and 10 A.g(-1)within 0.4-3.0 V, respectively. After cycling 3,000 times at 2 A.g(-1), almost 83% of the reversible capacity is maintained. The findings indicate that the electrochemical performances of metal sulfides can be further improved by edge-engineering and lattice-doping co-modification concept.
引用
收藏
页码:74 / 80
页数:7
相关论文
共 50 条
  • [21] Sulfur and nitrogen co-doped carbon nanosheets for improved sodium ion storage
    Bai, Lichong
    Sun, Yanfang
    Tang, Lin
    Zhang, Xiao
    Guo, Jinxue
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 868
  • [22] Synthesis of Co-Doped MoS2 Monolayers with Enhanced Valley Splitting (vol 32, 1906536, 2020)
    Zhou, Jiadong
    Lin, Junhao
    Sims, Hunter
    Jiang, Chongyun
    Cong, Chunxiao
    Brehm, John A.
    Zhang, Zhaowei
    Niu, Lin
    Chen, Yu
    Zhou, Yao
    Wang, Yanlong
    Liu, Fucai
    Zhu, Chao
    Yu, Ting
    Suenaga, Kazu
    Mishra, Rohan
    Pantelides, Sokrates T.
    Zhu, Zhen-Gang
    Gao, Weibo
    Liu, Zheng
    Zhou, Wu
    ADVANCED MATERIALS, 2020, 32 (29)
  • [23] MoS2 nanosheets with expanded interlayer spacing for enhanced sodium storage
    Dong, Huishuang
    Xu, Yang
    Zhang, Chenglin
    Wu, Yuhan
    Zhou, Min
    Liu, Long
    Dong, Yulian
    Fu, Qun
    Wu, Minghong
    Lei, Yong
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (12): : 3099 - 3105
  • [24] Enhanced catalytic activity of Co/Fe co-doped MoS2 catalyst as the peroxymonosulfate activator for organic pollutants degradation
    Yusong Pan
    Yuan Zhu
    Yuanqing Wang
    Run Huang
    Chengling Pan
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [25] First-principles Study on the Catalytic Effect of Co, P co-Doped MoS2 in Lithium-sulfur Batteries
    Chen Mingsui
    Zhang Huiru
    Zhang Qi
    Liu Jiaqin
    Wu Yucheng
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2021, 42 (08): : 2540 - 2549
  • [26] Enhanced catalytic activity of Co/Fe co-doped MoS2 catalyst as the peroxymonosulfate activator for organic pollutants degradation
    Pan, Yusong
    Zhu, Yuan
    Wang, Yuanqing
    Huang, Run
    Pan, Chengling
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (15)
  • [27] Co, Ni-Doped MoS2 Nanosheet Composites for Electrocatalytic Hydrogen Evolution
    Zhu, Denglin
    Wang, Jiani
    Ling, Qian
    Shu, Sizhan
    Chen, Lihong
    Li, Jincheng
    Yao, Yuxiang
    Dou, Wenyue
    Fu, Yi
    Huang, Qiwen
    Wang, Xuejun
    Chen, Yujia
    Zhou, Zile
    Wu, Pingfan
    ACS APPLIED NANO MATERIALS, 2024, 7 (24) : 28371 - 28379
  • [28] Rational synthesis of MoS2nanosheet arrays on carbon fibres for sodium ion storage
    Liang, Xinqi
    Chen, Minghua
    Shen, Shenghui
    Xia, Xinhui
    MATERIALS TECHNOLOGY, 2020, 35 (9-10) : 509 - 514
  • [29] Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers
    Zhao, Changtai
    Yu, Chang
    Zhang, Mengdi
    Sun, Qian
    Li, Shaofeng
    Banis, Mohammad Norouzi
    Han, Xiaotong
    Dong, Qiang
    Yang, Juan
    Wang, Gang
    Sun, Xueliang
    Qiu, Jieshan
    NANO ENERGY, 2017, 41 : 66 - 74
  • [30] Magnetic Co-Doped MoS2 Nanosheets for Efficient Catalysis of Nitroarene Reduction
    Nethravathi, C.
    Prabhu, Janak
    Lakshmipriya, S.
    Rajamathi, Michael
    ACS OMEGA, 2017, 2 (09): : 5891 - 5897