Finite element simulation of PMMA aircraft windshield against bird strike by using a rate and temperature dependent nonlinear viscoelastic constitutive model

被引:74
|
作者
Wang, Jun [1 ]
Xu, Yingjie [1 ]
Zhang, Weihong [1 ]
机构
[1] Northwestern Polytech Univ, Key Lab Contemporary Design & Integrated Mfg Tech, ESAC, Xian 710072, Shaanxi, Peoples R China
关键词
PMMA; Windshield; Bird strike; Constitutive model; Finite element method; IMPACT;
D O I
10.1016/j.compstruct.2013.09.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, a nonlinear viscoelastic constitutive model including the rate and temperature effect is developed to describe the mechanical behavior of polymethylmethacrylate (PMMA) material under high speed impact loading. Based on the updated Lagrangian approach, the incremented form of the constitutive model is deduced using the updated Kirchhoff stress tensors and strain tensors. Then this model is implemented with a user subroutine into the explicit dynamic finite element program LS-DYNA to simulate the dynamic behaviors of PMMA aircraft windshield under high speed bird strike. Numerical results are validated against experimental data and further investigations are carried out to study the influence of environmental temperature, impact location on windshield and bird impact velocity. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [31] Parameter Identification of Nonlinear Viscoelastic Material Model Using Finite Element-Based Inverse Analysis
    Hamim, Salah U.
    Singh, Raman P.
    RESIDUAL STRESS, THERMOMECHANICS & INFRARED IMAGING, HYBRID TECHNIQUES AND INVERSE PROBLEMS, VOL 9, 2017, : 141 - 150
  • [32] A constitutive material model for a commercial PMMA bone cement using a combination of nano-indentation test and finite element analysis
    Shirazi, H. Asgharzadeh
    Mirmohammadi, S. A.
    Shaali, M.
    Asnafi, A.
    Ayatollahi, M. R.
    POLYMER TESTING, 2017, 59 : 328 - 335
  • [33] Finite element simulation of the cutting process for inconel 718 alloy using a new material constitutive model
    Wang X.
    Huang C.
    Wang J.
    Zou B.
    Liu G.
    Liu H.
    1600, Trans Tech Publications Ltd (693): : 1046 - 1053
  • [34] The Finite Element Method applied in the viscoelastic constitutive model of Kelvin-Voigt for characterization of the soil dynamic response to water leakage simulation
    Proenca, Matheus S.
    Paschoalini, Amarildo T.
    Silva, Joao B. C.
    Souza, Adriano
    Obata, Daniel H. S.
    Lima, Luis P. M.
    Boaventura, Otavio D. Z.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (10)
  • [35] Plastic deformation of ITER specification tungsten: Temperature and strain rate dependent constitutive law deduced by inverse finite element analysis
    Zinovev, Aleksandr
    Delannay, Laurent
    Terentyev, Dmitry
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2021, 96
  • [36] A constitutive model for the simulation of temperature-, stress- and rate-dependent behaviour of frozen granular soils
    Cudmani, Roberto
    Yan, Wei
    Schindler, Ulrich
    GEOTECHNIQUE, 2022, 73 (12): : 1043 - 1055
  • [37] Inverse Approach of Parameter Optimization for Nonlinear Meta-Model Using Finite Element Simulation
    Hong, Seungpyo
    Shin, Dongseok
    Jeon, Euysik
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [38] Studies on rate-dependent switching effects of piezoelectric materials using a finite element model
    Arockiarajan, Arunachalakasi
    Delibas, Buelent
    Menzel, Andreas
    Seernann, Wolfgang
    COMPUTATIONAL MATERIALS SCIENCE, 2006, 37 (03) : 306 - 317
  • [39] The simulation of material behaviors in friction stir welding process by using rate-dependent constitutive model
    Zhang, Z.
    Chen, J. T.
    JOURNAL OF MATERIALS SCIENCE, 2008, 43 (01) : 222 - 232
  • [40] Temperature-dependent nonlinear transient heat conduction using the scaled boundary finite element method
    Suvin, V. S.
    Ooi, Ean Tat
    Song, Chongmin
    Natarajan, Sundararajan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 243