Complete Lorentzian 3-manifolds

被引:2
|
作者
Charette, Virginie [1 ]
Drumm, Todd A. [2 ]
机构
[1] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[2] Howard Univ, Dept Math, Washington, DC 20059 USA
来源
关键词
Lorentzian; 3-manifolds; proper actions; Schottky groups; Einstein universe; crooked planes; AFFINE TRANSFORMATIONS; DISCONTINUOUS GROUPS; MARGULIS INVARIANT; EINSTEIN UNIVERSE; MANIFOLDS;
D O I
10.1090/conm/639/12829
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on four lectures the authors gave in Almora on flat Lorentzian manifolds, these notes are an introduction to Lorentzian three-manifolds. In particular, we provide examples of quotients of Minkowski space by the actions of groups acting freely and properly discontinuously. Most of these notes deal with complete Lorentz manifolds whose fundamental groups are both free and non-abelian. We shall also look at Lorentz manifolds whose fundamental groups are solvable in some detail.
引用
收藏
页码:43 / 72
页数:30
相关论文
共 50 条
  • [1] Lorentzian foliations on 3-manifolds
    Boubel, C.
    Mounoud, P.
    Tarquini, C.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 : 1339 - 1362
  • [2] On the Einstein condition for Lorentzian 3-manifolds
    Aazami, Amir Babak
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (02)
  • [3] On Slant Curves in Sasakian Lorentzian 3-Manifolds
    Lee, Ji-Eun
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (02): : 108 - 115
  • [4] LORENTZIAN 3-MANIFOLDS WITH COMMUTING CURVATURE OPERATORS
    Garcia-Rio, Eduardo
    Haji-Badali, Ali
    Vazquez-Abal, M. Elena
    Vazquez-Lorenzo, Ramon
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2008, 5 (04) : 557 - 572
  • [5] Killing vector fields on Riemannian and Lorentzian 3-manifolds
    Aazami, Amir Babak
    Ream, Robert
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (09) : 3948 - 3966
  • [6] On the Ricci operator of locally homogeneous Lorentzian 3-manifolds
    Calvaruso, Giovanni
    Kowalski, Oldrich
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (01): : 124 - 139
  • [7] Complete systems of surfaces in 3-manifolds
    Lei, FC
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 122 : 185 - 191
  • [8] Homogeneous Lorentzian 3-manifolds with a parallel null vector field
    Batat, W.
    Calvaruso, G.
    De Leo, B.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2009, 14 (01): : 11 - 20
  • [9] Killing vectors and magnetic curves in Lorentzian α-Sasakian 3-manifolds
    Zhang, Han
    Liu, Haiming
    Chen, Xiawei
    MODERN PHYSICS LETTERS A, 2024, 39 (35-36)
  • [10] Two Special Types of Curves in Lorentzian α-Sasakian 3-Manifolds
    Chen, Xiawei
    Liu, Haiming
    SYMMETRY-BASEL, 2023, 15 (05):