Two Special Types of Curves in Lorentzian α-Sasakian 3-Manifolds

被引:0
|
作者
Chen, Xiawei [1 ]
Liu, Haiming [1 ]
机构
[1] Mudanjiang Normal Univ, Sch Math, Mudanjiang 157011, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 05期
基金
黑龙江省自然科学基金;
关键词
Lorentzian cross product; slant curves; Lorentzian alpha-Sasakian manifold; magnetic curves; SLANT CURVES; CONTACT; SURFACES; PRODUCT;
D O I
10.3390/sym15051077
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we focus on the research and analysis of the geometric properties and symmetry of slant curves and contact magnetic curves in Lorentzian a-Sasakian 3-manifolds. To do this, we define the notion of Lorentzian cross product. From the perspectives of the Legendre and non-geodesic curves, we found the ratio relationship between the curvature and torsion of the slant curve and contact magnetic curve in the Lorentzian a-Sasakian 3-manifolds. Moreover, we utilized the property of the contact magnetic curve to characterize the manifold as Lorentzian a-Sasakian and to find the slant curve type of the Frenet contact magnetic curve. Furthermore, we found an example to verify the geometric properties of the slant curve and contact magnetic curve in the Lorentzian a-Sasakian 3-manifolds.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] On Slant Curves in Sasakian Lorentzian 3-Manifolds
    Lee, Ji-Eun
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (02): : 108 - 115
  • [2] Slant Curves and Contact Magnetic Curves in Sasakian Lorentzian 3-Manifolds
    Lee, Ji-Eun
    SYMMETRY-BASEL, 2019, 11 (06):
  • [3] Killing vectors and magnetic curves in Lorentzian α-Sasakian 3-manifolds
    Zhang, Han
    Liu, Haiming
    Chen, Xiawei
    MODERN PHYSICS LETTERS A, 2024, 39 (35-36)
  • [4] On slant curves in Sasakian 3-manifolds
    Cho, Jong Taek
    Inoguchi, Jun-ichi
    Lee, Ji-Eun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (03) : 359 - 367
  • [5] Magnetic curves in quasi-Sasakian 3-manifolds
    Jun-ichi Inoguchi
    Marian Ioan Munteanu
    Ana Irina Nistor
    Analysis and Mathematical Physics, 2019, 9 : 43 - 61
  • [6] A New Representation for Slant Curves in Sasakian 3-Manifolds
    Ate, Osman
    Gok, Ismail
    Yayli, Yusuf
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01): : 277 - 289
  • [7] Magnetic curves in quasi-Sasakian 3-manifolds
    Inoguchi, Jun-ichi
    Munteanu, Marian Ioan
    Nistor, Ana Irina
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) : 43 - 61
  • [8] Frenet curves in 3-dimensional δ-Lorentzian trans Sasakian manifolds
    Akgun, Muslum Aykut
    AIMS MATHEMATICS, 2022, 7 (01): : 199 - 211
  • [9] Biharmonic Curves in Lorentzian Para-Sasakian Manifolds
    Keles, Sadik
    Perktas, Selcen Yueksel
    Kilic, Erol
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (02) : 325 - 344
  • [10] Complete Lorentzian 3-manifolds
    Charette, Virginie
    Drumm, Todd A.
    GEOMETRY, GROUPS AND DYNAMICS, 2015, 639 : 43 - 72