Balancing the stability and drug activation in adaptive nanoparticles potentiates chemotherapy in multidrug-resistant cancer

被引:10
|
作者
Wan, Jianqin [1 ,2 ,3 ]
Huang, Lingling [4 ]
Cheng, Jiangting [1 ,2 ,3 ]
Qi, Huangfu [1 ,2 ,3 ]
Jin, Jiahui [5 ]
Wang, Hangxiang [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 1, Sch Med, 79 Qingchun Rd, Hangzhou 310003, Zhejiang, Peoples R China
[2] NHC Key Lab Combined Multiorgan Transplantat, Hangzhou, Zhejiang, Peoples R China
[3] Res Ctr Diag & Treatment Hepatobiliary Dis, Key Lab Organ Transplantat, Hangzhou, Zhejiang, Peoples R China
[4] Zhejiang Univ, Coll Pharmaceut Sci, Inst Pharmaceut, Hangzhou 310058, Zhejiang, Peoples R China
[5] Zhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Zhejiang, Peoples R China
来源
THERANOSTICS | 2021年 / 11卷 / 09期
基金
中国国家自然科学基金;
关键词
cabazitaxel; polyprodrug; adaptive nanoformulation; drug toxicity; nanoparticle delivery;
D O I
10.7150/thno.54066
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Rationale: Prodrug strategies that render the drug temporarily inactive through a cleavable linkage are able to modulate the physicochemical properties of drugs for adaptive nanoparticle (NP) formulation. Here we used cabazitaxel as a model compound to test the validity of our "balancing NP stability and specific drug activation" strategy. Methods: Cabazitaxel is conjugated to hydrophobic polylactide fragments with varying chain lengths via a self-immolation linkage, yielding polymeric prodrugs that can be reactivated by reductive agents in cells. Following a nanoprecipitation protocol, cabazitaxel prodrugs can be stably entrapped in amphiphilic polyethylene-block-polylactide matrices to form core-shell nanotherapies with augmented colloidal stability. Results: Upon cellular uptake followed by intracellular reduction, the NPs spontaneously release chemically unmodified cabazitaxel and exert high cytotoxicity. Studies with near-infrared dye-labeled NPs demonstrate that the nanodelivery of the prodrugs extends their systemic circulation, accompanied with increased drug concentrations at target tumor sites. In preclinical mouse xenograft models, including two paclitaxel-resistant xenograft models, the nanotherapy shows a remarkably higher efficacy in tumor suppression and an improved safety profile than free cabazitaxel. Conclusion: Collectively, our approach enables more effective and less toxic delivery of the cabazitaxel drug, which could be a new generalizable strategy for re-engineering other toxic and water-insoluble therapeutics.
引用
收藏
页码:4137 / 4154
页数:18
相关论文
共 50 条
  • [31] Roxithromycin potentiates the effects of chloroquine and mefloquine on multidrug-resistant Plasmodium falciparum in vitro
    Min, T. H.
    Khairul, M. F. M.
    Low, J. H.
    Nasriyyah, C. H. Che
    A'shikin, A. Noor
    Norazmi, M. N.
    Ravichandran, M.
    Raju, S. S.
    EXPERIMENTAL PARASITOLOGY, 2007, 115 (04) : 387 - 392
  • [32] Bedaquiline: A novel antitubercular drug for multidrug-resistant tuberculosis
    Nagabushan, H.
    Roopadevi, H. S.
    JOURNAL OF POSTGRADUATE MEDICINE, 2014, 60 (03) : 300 - 302
  • [33] Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea
    Unemo, Magnus
    Nicholas, Robert A.
    FUTURE MICROBIOLOGY, 2012, 7 (12) : 1401 - 1422
  • [34] Drug treatment for multidrug-resistant Acinetobacter baumannii infections
    Bassetti, Matteo
    Righi, Elda
    Esposito, Silvano
    Petrosillo, Nicola
    Nicolini, Laura
    FUTURE MICROBIOLOGY, 2008, 3 (06) : 649 - 660
  • [35] Drug Development for Multidrug-Resistant Bacteria: Why Compromise?
    Paul, Mical
    Leibovici, Leonard
    JOURNAL OF INFECTIOUS DISEASES, 2018, 217 (03): : 508 - 509
  • [36] Mefloquine as a potential drug against multidrug-resistant tuberculosis
    Krieger, David
    Vesenbeckh, Silvan
    Schoenfeld, Nicolas
    Bettermann, Gudrun
    Bauer, Torsten Thomas
    Ruessmann, Holger
    Mauch, Harald
    EUROPEAN RESPIRATORY JOURNAL, 2015, 46 (05) : 1503 - 1505
  • [37] Accumulation of glucosylceramides in multidrug-resistant cancer cells
    Lavie, Y
    Cao, HT
    Bursten, SL
    Giuliano, AE
    Cabot, MC
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (32) : 19530 - 19536
  • [38] Multidrug-resistant breast cancer: current perspectives
    Martin, Heather L.
    Smith, Laura
    Tomlinson, Darren C.
    BREAST CANCER-TARGETS AND THERAPY, 2014, 6 : 1 - 13
  • [39] Particle Carriers for Combating Multidrug-Resistant Cancer
    Yan, Yan
    Bjoernmalm, Mattias
    Caruso, Frank
    ACS NANO, 2013, 7 (11) : 9512 - 9517
  • [40] A Dimer, but Not Monomer, of Tobramycin Potentiates Ceftolozane against Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa and Delays Resistance Development
    Idowu, Temilolu
    Zhanel, George G.
    Schweizer, Frank
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2020, 64 (03)