Balancing the stability and drug activation in adaptive nanoparticles potentiates chemotherapy in multidrug-resistant cancer

被引:10
|
作者
Wan, Jianqin [1 ,2 ,3 ]
Huang, Lingling [4 ]
Cheng, Jiangting [1 ,2 ,3 ]
Qi, Huangfu [1 ,2 ,3 ]
Jin, Jiahui [5 ]
Wang, Hangxiang [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 1, Sch Med, 79 Qingchun Rd, Hangzhou 310003, Zhejiang, Peoples R China
[2] NHC Key Lab Combined Multiorgan Transplantat, Hangzhou, Zhejiang, Peoples R China
[3] Res Ctr Diag & Treatment Hepatobiliary Dis, Key Lab Organ Transplantat, Hangzhou, Zhejiang, Peoples R China
[4] Zhejiang Univ, Coll Pharmaceut Sci, Inst Pharmaceut, Hangzhou 310058, Zhejiang, Peoples R China
[5] Zhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Zhejiang, Peoples R China
来源
THERANOSTICS | 2021年 / 11卷 / 09期
基金
中国国家自然科学基金;
关键词
cabazitaxel; polyprodrug; adaptive nanoformulation; drug toxicity; nanoparticle delivery;
D O I
10.7150/thno.54066
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Rationale: Prodrug strategies that render the drug temporarily inactive through a cleavable linkage are able to modulate the physicochemical properties of drugs for adaptive nanoparticle (NP) formulation. Here we used cabazitaxel as a model compound to test the validity of our "balancing NP stability and specific drug activation" strategy. Methods: Cabazitaxel is conjugated to hydrophobic polylactide fragments with varying chain lengths via a self-immolation linkage, yielding polymeric prodrugs that can be reactivated by reductive agents in cells. Following a nanoprecipitation protocol, cabazitaxel prodrugs can be stably entrapped in amphiphilic polyethylene-block-polylactide matrices to form core-shell nanotherapies with augmented colloidal stability. Results: Upon cellular uptake followed by intracellular reduction, the NPs spontaneously release chemically unmodified cabazitaxel and exert high cytotoxicity. Studies with near-infrared dye-labeled NPs demonstrate that the nanodelivery of the prodrugs extends their systemic circulation, accompanied with increased drug concentrations at target tumor sites. In preclinical mouse xenograft models, including two paclitaxel-resistant xenograft models, the nanotherapy shows a remarkably higher efficacy in tumor suppression and an improved safety profile than free cabazitaxel. Conclusion: Collectively, our approach enables more effective and less toxic delivery of the cabazitaxel drug, which could be a new generalizable strategy for re-engineering other toxic and water-insoluble therapeutics.
引用
收藏
页码:4137 / 4154
页数:18
相关论文
共 50 条
  • [1] Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells
    D K Adigbli
    D G G Wilson
    N Farooqui
    E Sousi
    P Risley
    I Taylor
    A J MacRobert
    M Loizidou
    British Journal of Cancer, 2007, 97 : 502 - 512
  • [2] Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells
    Adigbli, D. K.
    Wilson, D. G. G.
    Farooqui, N.
    Sousi, E.
    Risley, P.
    Taylor, I.
    MacRobert, A. J.
    Loizidou, M.
    BRITISH JOURNAL OF CANCER, 2007, 97 (04) : 502 - 512
  • [3] Amorphous Drug Nanoparticles for Inhalation Therapy of Multidrug-Resistant Tuberculosis
    Rudolph, David
    Redinger, Natalja
    Schwarz, Katharina
    Li, Feng
    Haedrich, Gabriela
    Cohrs, Michaela
    Dailey, Lea Ann
    Schaible, Ulrich E.
    Feldmann, Claus
    ACS NANO, 2023, 17 (10) : 9478 - 9486
  • [4] Functionalized Mesoporous Silica Nanoparticles for Drug-Delivery to Multidrug-Resistant Cancer Cells
    Igaz, Nora
    Belteky, Peter
    Kovacs, David
    Papp, Csaba
    Ronavari, Andrea
    Szabo, Diana
    Gacser, Attila
    Konya, Zoltan
    Kiricsi, Monika
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2022, 17 : 3079 - 3096
  • [5] CCT251545 enhances drug delivery and potentiates chemotherapy in multidrug-resistant cancers by Rac1-mediated macropinocytosis
    Qin, Siyuan
    Zhang, Zhe
    Huang, Zhao
    Luo, Yinheng
    Weng, Ningna
    Li, Bowen
    Tang, Yongquan
    Zhou, Li
    Jiang, Jingwen
    Lu, Yi
    Shao, Jichun
    Xie, Na
    Nice, Edouard C.
    Chen, Zhe-Sheng
    Zhang, Jian
    Huang, Canhua
    DRUG RESISTANCE UPDATES, 2023, 66
  • [6] Exosomes in multidrug-resistant cancer
    Kalyane, Dnyaneshwar
    Choudhary, Devendra
    Polaka, Suryanarayana
    Goykar, Hanmant
    Anup, Neelima
    Tambe, Vishakha
    Kalia, Kiran
    Tekade, Rakesh K.
    CURRENT OPINION IN PHARMACOLOGY, 2020, 54 : 109 - 120
  • [7] New drug for multidrug-resistant HIV
    Nature Biotechnology, 2018, 36 : 291 - 291
  • [8] New drug for multidrug-resistant HIV
    不详
    NATURE BIOTECHNOLOGY, 2018, 36 (04) : 291 - 291
  • [9] Multidrug-resistant and extensively drug-resistant tuberculosis
    Chiang, C-Y.
    Yew, W. W.
    INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2009, 13 (03) : 304 - 311
  • [10] Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis
    Tabarsi, Payam
    Yadegarinia, Davood
    ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES, 2015, 3 (01):