Improved Brain-Computer Interface Signal Recognition Algorithm Based on Few-Channel Motor Imagery

被引:3
|
作者
Wang, Fan [1 ,2 ]
Liu, Huadong [1 ,2 ]
Zhao, Lei [3 ]
Su, Lei [1 ,2 ]
Zhou, Jianhua [1 ,2 ]
Gong, Anmin [4 ]
Fu, Yunfa [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Peoples R China
[2] Kunming Univ Sci & Technol, Brain Cognit & Brain Comp Intelligence Integrat G, Kunming, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Sci, Kunming, Peoples R China
[4] Chinese Peoples Armed Police Force Engn Univ, Sch Informat Engn, Xian, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
MI-BCI with fewer channels; Dempster-Shafer evidence theory; time-frequency decomposition (TFD); phase space reconstruction (PSR); common spatial pattern (CSP); EEG; DECOMPOSITION; SELECTION;
D O I
10.3389/fnhum.2022.880304
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Common spatial pattern (CSP) is an effective algorithm for extracting electroencephalogram (EEG) features of motor imagery (MI); however, CSP mainly aims at multichannel EEG signals, and its effect in extracting EEG features with fewer channels is poor-even worse than before using CSP. To solve the above problem, a new combined feature extraction method has been proposed in this study. For EEG signals from fewer channels (three channels), wavelet packet transform, fast ensemble empirical mode decomposition, and local mean decomposition were used to decompose the band-pass filtered EEG into multiple time-frequency components, and the corresponding components were selected according to the frequency characteristics of MI or the correlation coefficient between its time-frequency components and the original EEG signal. Furthermore, phase space reconstruction (PSR) was performed on the selected components after the three time-frequency decompositions, the maximum Lyapunov index was calculated, and the features were reconstructed; then, CSP projection mapping was used for the reconstructed features. The support vector machine probability output model was trained by the obtained three mappings. Probability outputs by three different support vector machines were then obtained. Finally, the classification of test samples was determined by the fusion of the Dempster-Shafer evidence theory at the decision level. The results showed that the accuracy of the proposed method was 95.71% on data set III of BCI competition II (left- and right-hand MI), which was 2.88% higher than the existing methods. On data set IIb of BCI competition IV, the average accuracy was 86.60%, which was 2.3% higher than the existing methods. This study verified the effectiveness of the proposed method and provided an approach for the research and development of the MI-BCI system based on fewer channels.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Feature Extraction of Brain-Computer Interface Electroencephalogram Based on Motor Imagery
    Shi, Tianwei
    Ren, Ling
    Cui, Wenhua
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11787 - 11794
  • [22] A Predictive Speller Controlled by a Brain-Computer Interface Based on Motor Imagery
    D'Albis, Tiziano
    Blatt, Rossella
    Tedesco, Roberto
    Sbattella, Licia
    Matteucci, Matteo
    ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2012, 19 (03)
  • [23] Design of a Robotic Wheelchair with a Motor Imagery based Brain-Computer Interface
    Kim, Keun-Tae
    Carlson, Tom
    Lee, Seong-Whan
    2013 IEEE INTERNATIONAL WINTER WORKSHOP ON BRAIN-COMPUTER INTERFACE (BCI), 2013, : 46 - 48
  • [24] Asynchronous Brain-Computer Interface with Foot Motor Imagery
    Sun, Meng
    Akiyoshi, Hiroyuki
    Igasaki, Tomohiko
    Murayama, Nobuki
    2013 ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING (CME), 2013, : 191 - 196
  • [25] A Novel Classification Method for Motor Imagery Based on Brain-Computer Interface
    Chen, Chih-Yu
    Wu, Chun-Wei
    Lin, Chin-Teng
    Chen, Shi-An
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 4099 - 4102
  • [26] Classification of motor imagery tasks for electrocorticogram based brain-computer interface
    Xu F.
    Zhou W.
    Zhen Y.
    Yuan Q.
    Zhou, W. (wdzhou@sdu.edu.cn), 1600, Springer Verlag (04): : 149 - 157
  • [27] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [28] Development of a Wearable Motor-Imagery-Based Brain-Computer Interface
    Lin, Bor-Shing
    Pan, Jeng-Shyang
    Chu, Tso-Yao
    Lin, Bor-Shyh
    JOURNAL OF MEDICAL SYSTEMS, 2016, 40 (03) : 1 - 8
  • [29] Implementation of a brain-computer interface based on three states of motor imagery
    Wang, Yijun
    Hong, Bo
    Gao, Xiaorong
    Gao, Shangkai
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 5059 - 5062
  • [30] A Neurofeedback training paradigm for motor imagery based Brain-Computer Interface
    Xia, Bin
    Zhang, Qingmei
    Xie, Hong
    Li, Jie
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,