Properties of fluid deuterium under double-shock compression to several Mbar

被引:56
|
作者
Boehly, TR
Hicks, DG [1 ]
Celliers, PM
Collins, TJB
Earley, R
Eggert, JH
Jacobs-Perkins, D
Moon, SJ
Vianello, E
Meyerhofer, DD
Collins, GW
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA
[4] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
关键词
D O I
10.1063/1.1778164
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The compressibility of fluid deuterium up to several Mbar has been probed using laser-driven shock waves reflected from a quartz anvil. Combining high-precision (similar to1%) shock velocity measurements with the double-shock technique, where differences in equation of state (EOS) models are magnified, has allowed better discrimination between theoretical predictions in the second-shock regime. Double-shock results are in agreement with the stiffer EOS models-which exhibit roughly fourfold single-shock compression-for initial shocks up to 1 Mbar and above 2 Mbar, but diverge from these predictions in between. Softer EOS models-which exhibit sixfold single-shock compression at 1 Mbar-overestimate the reshock pressure for the entire range under study. (C) 2004 American Institute of Physics.
引用
收藏
页码:L49 / L52
页数:4
相关论文
共 50 条
  • [31] Molecular dynamics calculation of properties of liquid gallium and tin under shock compression
    D. K. Belashchenko
    High Temperature, 2017, 55 : 47 - 56
  • [32] Molecular dynamics calculation of properties of liquid gallium and tin under shock compression
    Belashchenko, D. K.
    HIGH TEMPERATURE, 2017, 55 (01) : 47 - 56
  • [33] Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa (vol 79, 014112, 2009)
    Hicks, D. G.
    Boehly, T. R.
    Celliers, P. M.
    Eggert, J. H.
    Moon, S. J.
    Meyerhofer, D. D.
    Collins, G. W.
    PHYSICAL REVIEW B, 2012, 85 (09):
  • [34] Strength properties and structure of a submicrocrystalline Al–Mg–Mn alloy under shock compression
    A. N. Petrova
    I. G. Brodova
    S. V. Razorenov
    Physics of Metals and Metallography, 2017, 118 : 601 - 607
  • [35] Silica Glass Structural Properties under Elastic Shock Compression: Experiments and Molecular Simulations
    Renou, Richard
    Soulard, Laurent
    Lescoute, Emilien
    Dereure, Corentin
    Loison, Didier
    Guin, Jean-Pierre
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (24): : 13324 - 13334
  • [36] Thermodynamic properties and electrical conductivity of hydrogen under multiple shock compression to 150 GPa
    Ternovoi, VY
    Filimonov, AS
    Fortov, VE
    Kvitov, SV
    Nikolaev, DN
    Pyalling, AA
    PHYSICA B, 1999, 265 (1-4): : 6 - 11
  • [37] Investigation of preheat induced degradation on material compression for double shock drive under different picket power
    Zhang, C.
    Yang, W. M.
    Duan, X. X.
    Wang, Z. B.
    Ding, Y. K.
    Peng, X. S.
    Liu, X. M.
    Liu, H.
    Zhang, H.
    Ye, Q.
    Sun, L.
    Yang, D.
    Wang, F.
    Yang, J. M.
    Jiang, S. E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (10)
  • [38] Dependency of hydromechanical properties of monzonitic granite on confining pressure and fluid pressure under compression
    Wang, Huanling
    Xu, Weiya
    Lu, Zaobao
    Chao, Zhiming
    Meng, Qingxiang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (16):
  • [39] Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression
    Petrova, A. N.
    Brodova, I. G.
    Razorenov, S. V.
    PHYSICS OF METALS AND METALLOGRAPHY, 2017, 118 (06): : 601 - 607
  • [40] Dielectric properties of PZT 95/5 during shock compression under high electric fields
    Setchell, R. E.
    Montgomery, S. T.
    Cox, D. E.
    Anderson, M. U.
    Shock Compression of Condensed Matter - 2005, Pts 1 and 2, 2006, 845 : 278 - 281