Laser Powder Bed Fusion Parameter Selection via Machine-Learning-Augmented Process Modeling

被引:17
|
作者
Srinivasan, Sandeep [1 ]
Swick, Brennan [2 ]
Groeber, Michael A. [1 ]
机构
[1] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
关键词
LAPLACIAN EIGENMAPS; DIMENSIONALITY; COMPLEX;
D O I
10.1007/s11837-020-04383-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion additive manufacturing (AM) is a highly active research area in the materials and manufacturing community, driven by promises of reduced lead time, increased design flexibility, and potentially location-specific process control. However, a complex processing space counters these benefits and results in difficulties when attempting to develop process parameter sets across different component geometries and subgeometries. We develop a procedure for coupling physics-based process modeling with machine learning and optimization methods to accelerate searching the AM processing space for suitable printing parameter sets. We demonstrate the approach first on simple geometries that vary in size to show the methodology and then on a more complicated geometry to show the benefit of locally tailored process parameters on component processing history.
引用
收藏
页码:4393 / 4403
页数:11
相关论文
共 50 条
  • [21] Best practices for machine learning strategies aimed at process parameter development in powder bed fusion additive manufacturing
    Samadiani, Najmeh
    Barnard, Amanda S.
    Gunasegaram, Dayalan
    Fayyazifar, Najmeh
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024,
  • [22] Integrating Phase Field Modeling and Machine Learning to Develop Process-Microstructure Relationships in Laser Powder Bed Fusion of IN718
    Ma, Li
    Liu, Hudson
    Williams, Maureen
    Levine, Lyle
    Ramazani, Ali
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2024, 13 (05) : 983 - 995
  • [23] A universal predictor-based machine learning model for optimal process maps in laser powder bed fusion process
    Gu, Zhaochen
    Sharma, Shashank
    Riley, Daniel A.
    Pantawane, Mangesh, V
    Joshi, Sameehan S.
    Fu, Song
    Dahotre, Narendra B.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (08) : 3341 - 3363
  • [24] A universal predictor-based machine learning model for optimal process maps in laser powder bed fusion process
    Zhaochen Gu
    Shashank Sharma
    Daniel A. Riley
    Mangesh V. Pantawane
    Sameehan S. Joshi
    Song Fu
    Narendra B. Dahotre
    Journal of Intelligent Manufacturing, 2023, 34 : 3341 - 3363
  • [25] Machine-learning-augmented domain decomposition method for near-wall turbulence modeling
    Lyu, Shiyu
    Kou, Jiaqing
    Adams, Nikolaus A.
    PHYSICAL REVIEW FLUIDS, 2024, 9 (04):
  • [26] Anomaly detection in laser powder bed fusion using machine learning: A review
    Sahar, Tayyaba
    Rauf, Muhammad
    Murtaza, Ahmar
    Khan, Lehar Asip
    Ayub, Hasan
    Jameel, Syed Muslim
    Ul Ahad, Inam
    RESULTS IN ENGINEERING, 2023, 17
  • [27] FINDING OPTIMAL PARAMETER RANGES FOR LASER POWDER BED FUSION WITH PREDICTIVE MODELING AT MESOSCALE
    Nakapkin, Dmitry S.
    Zakirov, Andrey, V
    Belousov, Sergei A.
    Bogdanova, Maria, V
    Korneev, Boris A.
    Stepanov, Andrey E.
    Perepelkina, Anastasia Yu
    Levchenko, Vadim D.
    Potapkin, Boris, V
    Meshkovi, Andrey
    SECOND INTERNATIONAL CONFERENCE ON SIMULATION FOR ADDITIVE MANUFACTURING (SIM-AM 2019), 2019, : 297 - 308
  • [28] Investigating the process parameter window for laser powder bed fusion of copper chrome zirconium
    Trask, M. E.
    Bishop, D. P.
    CANADIAN METALLURGICAL QUARTERLY, 2024,
  • [29] Composition and process parameter dependence of yield strength in laser powder bed fusion alloys
    Sabzi, Hossein Eskandari
    Rivera-Diaz-del-Castillo, Pedro E. J.
    MATERIALS & DESIGN, 2020, 195
  • [30] Process Parameter Optimisation in Laser Powder Bed Fusion of Duplex Stainless Steel 2205
    Mayoral, N.
    Medina, L.
    Rodriguez-Aparicio, R.
    Diaz, A.
    Alegre, J. M.
    Cuesta, I. I.
    APPLIED SCIENCES-BASEL, 2024, 14 (15):