Research on semi-supervised learning for hyperspectral remote sensing imaging classification base on confidence entropy

被引:0
|
作者
Wang, Chunyang [1 ,2 ]
Xu, Zhifang [2 ]
Wang, Shuangting [2 ]
Zhang, Hebing [2 ]
Chen, Zhichao [2 ]
机构
[1] Henan Polytech Univ, Natl Adm Surveying Mapping & Geoinformat, Key Lab Mine Spatial Informat Technol, Jiaozuo 454003, Peoples R China
[2] Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454003, Peoples R China
关键词
hyperspectral image; image classification; semi-supervised learning; posterior probability; confidence entropy; S EVIDENCE THEORY; 3; DECADES; FUSION;
D O I
10.1109/ICPADS.2016.163
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The research of Hyperspectral classification is the hotpots at present. In this article, an effective semi-supervised classification method was proposed for hyperspectral image based on confidence entropy. The experimental results show that the proposed method can effectively improve the accuracy of classification and obtain better classification results for hyperspectral image data using few labeled samples.
引用
收藏
页码:1225 / 1228
页数:4
相关论文
共 50 条
  • [1] Semi-supervised classification method for hyperspectral remote sensing images
    Gomez-Chova, L
    Calpe, J
    Camps-Valls, G
    Martín, JD
    Soria, E
    Vila, J
    Alonso-Chorda, L
    Moreno, J
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1776 - 1778
  • [2] Advances in semi-supervised classification of hyperspectral remote sensing images
    Yang X.
    Fang L.
    Yue J.
    National Remote Sensing Bulletin, 2024, 28 (01) : 19 - 41
  • [3] SEMI-SUPERVISED DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL REMOTE SENSING IMAGE CLASSIFICATION
    Xia, Junshi
    Chanussot, Jocelyn
    Du, Peijun
    He, Xiyan
    2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [4] SEMI-SUPERVISED FEATURE LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION
    Yin, Xiaoshuang
    Yang, Wen
    Xia, Gui-Song
    Dong, Lixia
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1261 - 1264
  • [5] SEMI-SUPERVISED CONDITIONAL RANDOM FIELD FOR HYPERSPECTRAL REMOTE SENSING IMAGE CLASSIFICATION
    Wu, Junfeng
    Jiang, Zhiguo
    Zhang, Haopeng
    Cai, Bowen
    Wei, Quanmao
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2614 - 2617
  • [6] Semi-supervised Classification for Remote Sensing Datasets
    Hernandez-Sequeira, Itza
    Fernandez-Beltran, Ruben
    Xu, Yonghao
    Ghamisi, Pedram
    Pla, Filiberto
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 463 - 474
  • [7] A hierarchical learning paradigm for semi-supervised classification of remote sensing images
    Alhichri, Haikel
    Bazi, Yacoub
    Alajlan, Naif
    Ammour, Nassim
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4388 - 4391
  • [8] SCALABLE SEMI-SUPERVISED CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING DATA WITH SPECTRAL AND SPATIAL INFORMATION
    Chi, Mingmin
    Liu, Jun
    Bao, Jiangfeng
    Benediktsson, Jon Atli
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1700 - 1703
  • [9] Graph based semi-supervised learning with class-probability distance for hyperspectral remote sensing image classification
    Faculty of Mechanical and Electronic Information, China University of Geosciences, Wuhan
    430074, China
    Cehui Xuebao, 11 (1182-1189):
  • [10] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362