High-resolution pore-scale simulation of dissolution in porous media

被引:76
|
作者
Liu, Min [1 ]
Mostaghimi, Peyman [1 ]
机构
[1] Univ New South Wales, Sch Petr Engn, Sydney, NSW 2052, Australia
关键词
Reactive transport; Dissolution; Micro-CT imaging; Pore-scale modelling; Lattice Boltzmann; REACTIVE TRANSPORT; FINES MIGRATION; REACTION-RATES; FLUID-FLOW; PERMEABILITY; CARBONATE; POROSITY; DEPENDENCE; STORAGE;
D O I
10.1016/j.ces.2016.12.064
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Reactive flow is imperative in a wide range of chemical sciences, hydrogeological and environmental applications. A parallel numerical framework is presented for modelling the dissolution of a carbonate rock at the pore scale. Mass transport, chemical reactions, solid updates and migration are included in the model which are solved by the combination of lattice Boltzmann and finite volume methods. For calculation of the flow field, the incompressible Stokes equation is solved by applying an efficient lattice Boltzmann method with the D3Q19scheme. The solid-fluid interaction is computed with the finite volume method. The numerical method includes the migration of solid particles released due to dissolution within the porous medium. The solid migration is realised by the cluster analysis and local movement. We validate this model by comparing against published dynamic micro-CT imaging experiments for dissolution of a Ketton carbonate. To measure the local dissolution, the porosity profiles are compared with the published experimental observations. The increases in permeability and porosity are investigated and a power law is derived to describe their relationship. Then, the significance of capturing the migration of solid particles released due to dissolution on hydrological properties of rocks is explored. The numerical approach is able to perform parallel simulation on large high-resolution micro-CT images. We show the importance of simulation directly on micro-CT images without reducing the resolution of rock micro-CT images. Further simulations are performed at Peclet regimes similar to sub-surface flow and the effect of flow rate on reactive transport is studied. This study illustrates the effect of inclusion of solid migration and the capability of simulation of reactive transport directly on high-resolution images and helps understand the reactive transport at the pore scale. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:360 / 369
页数:10
相关论文
共 50 条
  • [41] Pore-scale modeling of phase change in porous media
    Cueto-Felgueroso, Luis
    Fu, Xiaojing
    Juanes, Ruben
    PHYSICAL REVIEW FLUIDS, 2018, 3 (08):
  • [42] Pore-scale simulation of drying in porous media using a hybrid lattice Boltzmann: pore network model
    Zhao, Jianlin
    Qin, Feifei
    Kang, Qinjun
    Derome, Dominique
    Carmeliet, Jan
    DRYING TECHNOLOGY, 2022, 40 (04) : 719 - 734
  • [43] Pore-scale simulation of flow in minichannels with porous fins
    Gao W.
    Xu X.
    Liang X.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2020, 50 (11): : 1487 - 1496
  • [44] Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics
    Zhu, Y
    Fox, PJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 182 (02) : 622 - 645
  • [45] Effects of microfracture parameters on adaptive pumping in fractured porous media: Pore-scale simulation
    Liang, Fachun
    He, Zhennan
    Meng, Jia
    Zhao, Jingwen
    Yu, Chao
    ENERGY, 2023, 263
  • [46] Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method
    Xia, Ming
    COMPUTERS & GEOSCIENCES, 2016, 88 : 30 - 40
  • [47] The Effective Thermal Conductivity of Unsaturated Porous Media Deduced by Pore-Scale SPH Simulation
    Bai, Bing
    Wang, Yan
    Rao, Dengyu
    Bai, Fan
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [48] An Orthorhombic Lattice Boltzmann Model for Pore-Scale Simulation of Fluid Flow in Porous Media
    Jiang, Baoliang
    Zhang, Xiaoxian
    TRANSPORT IN POROUS MEDIA, 2014, 104 (01) : 145 - 159
  • [49] An Orthorhombic Lattice Boltzmann Model for Pore-Scale Simulation of Fluid Flow in Porous Media
    Baoliang Jiang
    Xiaoxian Zhang
    Transport in Porous Media, 2014, 104 : 145 - 159
  • [50] Pore-scale modeling of effects of multiphase reactive transport on solid dissolution in porous media with structural heterogeneity
    Zhang, Chuangde
    Chen, Li
    Min, Ting
    Kang, Qinjun
    Tao, Wen-Quan
    CHEMICAL ENGINEERING SCIENCE, 2024, 295