Mechanisms underlying subunit independence in pyramidal neuron dendrites

被引:34
|
作者
Behabadi, Bardia F. [1 ]
Mel, Bartlett W. [1 ,2 ]
机构
[1] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA
[2] Univ So Calif, Neurosci Grad Program, Los Angeles, CA 90089 USA
关键词
synaptic integration; 2-layer model; active dendrites; NMDA spike; dendritic spike; PROPAGATING ACTION-POTENTIALS; DISTAL APICAL DENDRITES; RETINAL GANGLION-CELLS; BASAL DENDRITES; IN-VIVO; SYNAPTIC INTEGRATION; NMDA SPIKES; ELECTROPHYSIOLOGICAL PROPERTIES; TERMINAL DENDRITES; CORTICAL-NEURONS;
D O I
10.1073/pnas.1217645111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pyramidal neuron (PN) dendrites compartmentalize voltage signals and can generate local spikes, which has led to the proposal that their dendrites act as independent computational subunits within a multilayered processing scheme. However, when a PN is strongly activated, back-propagating action potentials (bAPs) sweeping outward from the soma synchronize dendritic membrane potentials many times per second. How PN dendrites maintain the independence of their voltage-dependent computations, despite these repeated voltage resets, remains unknown. Using a detailed compartmental model of a layer 5 PN, and an improved method for quantifying subunit independence that incorporates a more accurate model of dendritic integration, we first established that the output of each dendrite can be almost perfectly predicted by the intensity and spatial configuration of its own synaptic inputs, and is nearly invariant to the rate of bAP-mediated "cross-talk" from other dendrites over a 100-fold range. Then, through an analysis of conductance, voltage, and current waveforms within the model cell, we identify three biophysical mechanisms that together help make independent dendritic computation possible in a firing neuron, suggesting that a major subtype of neocortical neuron has been optimized for layered, compartmentalized processing under in-vivo-like spiking conditions.
引用
收藏
页码:498 / 503
页数:6
相关论文
共 50 条
  • [21] Progressive atrophy of pyramidal neuron dendrites in autoimmune MRL-lpr mice
    Sakic, B
    Szechtman, H
    Denburg, JA
    Gorny, G
    Kolb, B
    Whishaw, IQ
    JOURNAL OF NEUROIMMUNOLOGY, 1998, 87 (1-2) : 162 - 170
  • [22] Location-Dependent Effects of Inhibition on Local Spiking in Pyramidal Neuron Dendrites
    Jadi, Monika
    Polsky, Alon
    Schiller, Jackie
    Mel, Bartlett W.
    PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (06)
  • [23] Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites
    Nicholas P. Poolos
    Michele Migliore
    Daniel Johnston
    Nature Neuroscience, 2002, 5 : 767 - 774
  • [24] Control of Na+ spike backpropagation by intracellular signaling in the pyramidal neuron dendrites
    Hiroshi Tsubokawa
    Molecular Neurobiology, 2000, 22 : 129 - 141
  • [25] Regulatory mechanisms underlying the differential growth of dendrites and axons
    Xin Wang
    Gabriella R.Sterne
    Bing Ye
    NeuroscienceBulletin, 2014, 30 (04) : 557 - 568
  • [26] Regulatory mechanisms underlying the differential growth of dendrites and axons
    Xin Wang
    Gabriella R. Sterne
    Bing Ye
    Neuroscience Bulletin, 2014, 30 : 557 - 568
  • [27] Regulatory mechanisms underlying the differential growth of dendrites and axons
    Wang, Xin
    Sterne, Gabriella R.
    Ye, Bing
    NEUROSCIENCE BULLETIN, 2014, 30 (04) : 557 - 568
  • [28] Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites
    Golding, NL
    Kath, WL
    Spruston, N
    JOURNAL OF NEUROPHYSIOLOGY, 2001, 86 (06) : 2998 - 3010
  • [29] Local Control of Postinhibitory Rebound Spiking in CA1 Pyramidal Neuron Dendrites
    Ascoli, Giorgio A.
    Gasparini, Sonia
    Medinilla, Virginia
    Migliore, Michele
    JOURNAL OF NEUROSCIENCE, 2010, 30 (18): : 6434 - 6442
  • [30] Single Ih channels in pyramidal neuron dendrites:: Properties, distribution, and impact on action potential output
    Kole, MHP
    Hallermann, S
    Stuart, GJ
    JOURNAL OF NEUROSCIENCE, 2006, 26 (06): : 1677 - 1687