A class of nth-order BVPs with nonlocal conditions

被引:14
|
作者
Graef, John R. [1 ]
Moussaoui, Toufik [2 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[2] ENS, Dept Math, Algiers 16050, Algeria
关键词
BVPs; Existence; Nonlocal conditions; Fixed point theorems;
D O I
10.1016/j.camwa.2009.07.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to present some existence results for a nonlinear nth-order boundary value problem with nonlocal conditions. Various fixed point theorems are used in the proofs. Examples are included to illustrate the results. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1662 / 1671
页数:10
相关论文
共 50 条
  • [41] Positive Solutions of nth-Order Boundary Value Problems with Integral Boundary Conditions
    Karaca, Ilkay Yaslan
    Fen, Fatma Tokmak
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2015, 20 (02) : 188 - 204
  • [42] Positive Solutions for a nth-Order Impulsive Differential Equation with Integral Boundary Conditions
    Xu, Jiafa
    O'Regan, Donal
    Yang, Zhilin
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2014, 22 (04) : 427 - 439
  • [43] ON THE ROBUST GLOBAL STABILIZATION OF NTH-ORDER REACTIONS
    ADEBEKUN, K
    SCHORK, FJ
    [J]. CHEMICAL ENGINEERING COMMUNICATIONS, 1991, 101 : 1 - 15
  • [44] NTH-ORDER CORRECTION TO REISSS TRANSITION AMPLITUDE
    HAQUE, SN
    [J]. PHYSICAL REVIEW A, 1973, 8 (06): : 3227 - 3229
  • [45] Nth-order fuzzy linear differential equations
    Allahviranloo, T.
    Ahmady, E.
    Ahmady, N.
    [J]. INFORMATION SCIENCES, 2008, 178 (05) : 1309 - 1324
  • [46] Nth-order nonlinear intensity fluctuation amplifier
    Zhang, Shuanghao
    Zheng, Huaibin
    Wang, Gao
    Chen, Hui
    Liu, Jianbin
    Zhou, Yu
    He, Yuchen
    Luo, Sheng
    Liu, Yanyan
    Xu, Zhuo
    [J]. OPTICS COMMUNICATIONS, 2022, 514
  • [47] On the periodic solutions for an nth-order difference equations
    El-Owaidy, H
    Mohamed, HY
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2002, 131 (2-3) : 461 - 467
  • [48] STABLE PROPER NTH-ORDER INVERSES - REPLY
    ANTSAKLIS, PJ
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (04) : 674 - 674
  • [49] General approach for Nth-order dispersive material
    Hu, B
    Sewell, P
    Vukovic, A
    Paul, J
    Benson, T
    [J]. IEE PROCEEDINGS-OPTOELECTRONICS, 2006, 153 (01): : 13 - 20
  • [50] On boundary value problems for an nth-order equation
    N. I. Vasil’ev
    A. Ya. Lepin
    L. A. Lepin
    [J]. Differential Equations, 2010, 46 : 182 - 186