Precipitation and Calcination of High-Capacity LiNiO2 Cathode Material for Lithium-Ion Batteries

被引:29
|
作者
Valikangas, Juho [1 ]
Laine, Petteri [1 ]
Hietaniemi, Marianna [1 ]
Hu, Tao [1 ]
Tynjala, Pekka [1 ,2 ]
Lassi, Ulla [1 ]
机构
[1] Univ Oulu, Res Unit Sustainable Chem, POB 4000, FI-90014 Oulu, Finland
[2] Univ Jyvaskyla, Kokkola Univ Consortium Chydenius, Talonpojankatu 2B, FI-67100 Kokkola, Finland
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 24期
关键词
lithium-ion battery; LNO; cathode; lithium nickel oxide; LAYERED OXIDE CATHODES; COBALT-FREE; ELECTROCHEMISTRY; PERFORMANCE;
D O I
10.3390/app10248988
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article presents the electrochemical results that can be achieved for pure LiNiO2 cathode material prepared with a simple, low-cost, and efficient process. The results clarify the roles of the process parameters, precipitation temperature, and lithiation temperature in the performance of high-quality LiNiO2 cathode material. Ni(OH)(2) with a spherical morphology was precipitated at different temperatures and mixed with LiOH to synthesize the LiNiO2 cathode material. The LiNiO2 calcination temperature was optimized to achieve a high initial discharge capacity of 231.7 mAh/g (0.1 C/2.6 V) with a first cycle efficiency of 91.3% and retaining a capacity of 135 mAh/g after 400 cycles. These are among the best results reported so far for pure LiNiO2 cathode material.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [31] Synthesis of optimized LiNiO2 for lithium ion batteries
    N. Kalaiselvi
    A. V. Raajaraajan
    B. Sivagaminathan
    N. G. Renganathan
    N. Muniyandi
    M. Ragavan
    Ionics, 2003, 9 : 382 - 387
  • [32] Enhancing LiNiO2 cathode materials by concentration-gradient yttrium modification for rechargeable lithium-ion batteries
    Zhang, Yudong
    Li, Hang
    Liu, Junxiang
    Liu, Jiuding
    Ma, Hua
    Cheng, Fangyi
    JOURNAL OF ENERGY CHEMISTRY, 2021, 63 : 312 - 319
  • [33] SYNTHESIS AND PROPERTIES OF LINIO2 AS CATHODE MATERIAL FOR SECONDARY BATTERIES
    YAMADA, S
    FUJIWARA, M
    KANDA, M
    JOURNAL OF POWER SOURCES, 1995, 54 (02) : 209 - 213
  • [34] Transforming silicon slag into high-capacity anode material for lithium-ion batteries
    Vanpeene, Victor
    Heitz, Alexandre
    Herkendaal, Natalie
    Soucy, Patrick
    Douillard, Thierry
    Roue, Lionel
    BATTERY ENERGY, 2022, 1 (04):
  • [35] Regeneration of high-capacity Ni-rich layered cathode material from spent lithium-ion batteries
    Zhao, Zaowen
    Zhang, Bao
    Zou, Jingtian
    Li, Pengfei
    Liu, Zihang
    Cheng, Lei
    Ou, Xing
    Zhang, Jiafeng
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [36] A High-Capacity Tellurium@Carbon Anode Material for Lithium-Ion Batteries
    Zhang, Juan
    Yin, Ya-Xia
    You, Ya
    Yan, Yang
    Guo, Yu-Guo
    ENERGY TECHNOLOGY, 2014, 2 (9-10) : 757 - 762
  • [37] Mechanics of high-capacity electrodes in lithium-ion batteries
    Ting Zhu
    Chinese Physics B, 2016, (01) : 12 - 19
  • [38] Mechanics of high-capacity electrodes in lithium-ion batteries
    Zhu, Ting
    CHINESE PHYSICS B, 2016, 25 (01)
  • [39] Hydrogen Bond Networks Stabilized High-Capacity Organic Cathode for Lithium-Ion Batteries
    Zheng, Shibing
    Shi, Dongjie
    Sun, Tianjiang
    Zhang, Letian
    Zhang, Weijia
    Li, Yixin
    Guo, Zhenbo
    Tao, Zhanliang
    Chen, Jun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (09)
  • [40] High-capacity nanocarbon anodes for lithium-ion batteries
    Zhang, Haitao
    Sun, Xianzhong
    Zhang, Xiong
    Lin, He
    Wang, Kai
    Ma, Yanwei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 622 : 783 - 788