COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning

被引:82
|
作者
Haghanifar, Arman [1 ]
Majdabadi, Mahdiyar Molahasani [2 ]
Choi, Younhee [2 ]
Deivalakshmi, S. [3 ]
Ko, Seokbum [2 ]
机构
[1] Univ Saskatchewan, Div Biomed Engn, Saskatoon, SK, Canada
[2] Univ Saskatchewan, Dept Elect & Comp Engn, Saskatoon, SK, Canada
[3] Natl Inst Technol, Trichy, India
关键词
COVID-19; Chest X-ray; Convolutional neural networks; CheXNet; Imaging features;
D O I
10.1007/s11042-022-12156-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset. It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making. In this paper, numerous chest x-ray images from several sources are collected, and one of the largest publicly accessible datasets is prepared. Finally, using the transfer learning paradigm, the well-known CheXNet model is utilized to develop COVID-CXNet. This powerful model is capable of detecting the novel coronavirus pneumonia based on relevant and meaningful features with precise localization. COVID-CXNet is a step towards a fully automated and robust COVID-19 detection system.
引用
收藏
页码:30615 / 30645
页数:31
相关论文
共 50 条
  • [21] Prediction of Covid-19 Based on Chest X-Ray Images Using Deep Learning with CNN
    Meem, Anika Tahsin
    Khan, Mohammad Monirujjaman
    Masud, Mehedi
    Aljahdali, Sultan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 41 (03): : 1223 - 1240
  • [22] FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
    Agrawal, Tarun
    Choudhary, Prakash
    EVOLVING SYSTEMS, 2022, 13 (04) : 519 - 533
  • [23] An Efficient Deep Learning Model to Detect COVID-19 Using Chest X-ray Images
    Chakraborty, Somenath
    Murali, Beddhu
    Mitra, Amal K.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (04)
  • [24] Comparison of deep learning architectures for COVID-19 diagnosis using chest X-ray images
    Sampen, Denilson
    Lavarello, Roberto
    MEDICAL IMAGING 2022: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2022, 12035
  • [25] Covid-19 Diagnosis Using a Deep Learning Ensemble Model with Chest X-Ray Images
    Türk F.
    Computer Systems Science and Engineering, 2023, 45 (02): : 1357 - 1373
  • [26] Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images
    Escorcia-Gutierrez, Jose
    Gamarra, Margarita
    Soto-Diaz, Roosvel
    Alsafari, Safa
    Yafoz, Ayman
    Mansour, Romany F.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5255 - 5270
  • [27] FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
    Tarun Agrawal
    Prakash Choudhary
    Evolving Systems, 2022, 13 : 519 - 533
  • [28] COVID-19 detection in chest X-ray images using deep boosted hybrid learning
    Khan, Saddam Hussain
    Sohail, Anabia
    Khan, Asifullah
    Hassan, Mehdi
    Lee, Yeon Soo
    Alam, Jamshed
    Basit, Abdul
    Zubair, Saima
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [29] Deep Learn in for Screening COVID-19 using Chest X-Ray Images
    Basu, Sanhita
    Mitra, Sushmita
    Saha, Nilanjan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2521 - 2527
  • [30] Detection of COVID-19 Using Deep Learning on X-Ray Images
    Alotaibi, Munif
    Alotaibi, Bandar
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (03): : 885 - 898