Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interactions

被引:38
|
作者
He, Qiong [1 ]
Zhang, Fei [1 ]
Pu, MingBo [1 ,2 ]
Ma, XiaoLiang [1 ,2 ]
Li, Xiong [1 ,2 ]
Jin, JinJin [1 ]
Guo, YingHui [1 ,2 ]
Luo, XianGang [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Opt Technol Nanofabricat & Microeng, Inst Opt & Elect, Chengdu 610209, Peoples R China
[2] Univ Chinese Acad Sci, Sch Optoelect, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
asymmetric photonic spin-orbit interactions; edge detection; metasurface; spatial differentiator; BROAD-BAND; RESOLUTION; PHASE;
D O I
10.1515/nanoph-2020-0366
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Spatial differentiator is the key element for edge detection, which is indispensable in image processing, computer vision involving image recognition, image restoration, image compression, and so on. Spatial differentiators based on metasurfaces are simpler and more compact compared with traditional bulky optical analog differentiators. However, most of them still rely on complex optical systems, leading to the degraded compactness and efficiency of the edge detection systems. To further reduce the complexity of the edge detection system, a monolithic metasurface spatial differentiator is demonstrated based on asymmetric photonic spin-orbit interactions. Edge detection can be accomplished via such a monolithic metasurface using the polarization degree. Experimental results show that the designed monolithic spatial differentiator works in a broadband range. Moreover, 2D edge detection is experimentally demonstrated by the proposed monolithic metasurface. The proposed design can be applied at visible and near-infrared wavelengths by proper dielectric materials and designs. We envision this approach may find potential applications in optical analog computing on compact optical platforms.
引用
收藏
页码:741 / 748
页数:8
相关论文
共 50 条
  • [21] Mesoscopic rings with spin-orbit interactions
    Berche, Bertrand
    Chatelain, Christophe
    Medina, Ernesto
    EUROPEAN JOURNAL OF PHYSICS, 2010, 31 (05) : 1267 - 1286
  • [22] Spin-Orbit Interactions in Osmium Complexes
    Asanov, I. P.
    Fedorenko, A. D.
    Vasilchenko, D. B.
    Grebenkina, M. A.
    Lavrov, A. N.
    Korol'kov, I. V.
    Kriventsov, V. V.
    Trubina, S. V.
    Asanova, T. I.
    JOURNAL OF SURFACE INVESTIGATION, 2023, 17 (03): : 630 - 640
  • [23] Spin-orbit interactions of transverse sound
    Shubo Wang
    Guanqing Zhang
    Xulong Wang
    Qing Tong
    Jensen Li
    Guancong Ma
    Nature Communications, 12
  • [24] Analytic propagators for spin-orbit interactions
    Hsu, Bailey C.
    Van Huele, Jean-Francois S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (47)
  • [25] Spin-orbit interactions of transverse sound
    Wang, Shubo
    Zhang, Guanqing
    Wang, Xulong
    Tong, Qing
    Li, Jensen
    Ma, Guancong
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [26] SPIN-ORBIT INTERACTIONS IN MOLECULAR RADICALS
    GLARUM, SH
    JOURNAL OF CHEMICAL PHYSICS, 1963, 39 (11): : 3141 - &
  • [27] SPIN-ORBIT INTERACTIONS Hide and seek
    Partoens, Bart
    NATURE PHYSICS, 2014, 10 (05) : 333 - 334
  • [28] Spin-orbit interactions in vortex singularimetry
    Goette, Joerg B.
    Dennis, Mark R.
    SPINTRONICS VI, 2013, 8813
  • [29] Spin-Orbit Interactions in Osmium Complexes
    I. P. Asanov
    A. D. Fedorenko
    D. B. Vasilchenko
    M. A. Grebenkina
    A. N. Lavrov
    I. V. Korol’kov
    V. V. Kriventsov
    S. V. Trubina
    T. I. Asanova
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2023, 17 : 630 - 640
  • [30] Spin-orbit interactions in semiconductor superlattice
    Hao, Ya-Fei
    PHYSICS LETTERS A, 2020, 384 (04)