Graphs with large maximum degree containing no edge-critical graphs

被引:0
|
作者
Huo, Qingyi [1 ]
Yuan, Long-Tu [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai Key Lab PMMP, 500 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.ejc.2022.103576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a graph is edge-critical if it contains an edge whose deletion reduces its chromatic number. Let F be an edge-critical graph with chromatic number r + 2. For sufficiently large n, we determine the maximum number of edges in an n-vertex graph with given maximum degree that does not contain a copy of F. Moreover, the unique extremal graph is a complete (r+1)-partite graph. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Anti-Ramsey Numbers of Doubly Edge-Critical Graphs
    Jiang, Tao
    Pikhurko, Oleg
    JOURNAL OF GRAPH THEORY, 2009, 61 (03) : 210 - 218
  • [22] Strong edge-colorings of sparse graphs with large maximum degree
    Choi, Ilkyoo
    Kim, Jaehoon
    Kostochka, Alexandr V.
    Raspaud, Andre
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 67 : 21 - 39
  • [23] Size of edge-critical uniquely 3-colorable planar graphs
    Li, Zepeng
    Zhu, Enqiang
    Shao, Zehui
    Xu, Jin
    DISCRETE MATHEMATICS, 2016, 339 (04) : 1242 - 1250
  • [24] On 4-chromatic edge-critical regular graphs of high connectivity
    Dobrynin, AA
    Melnikov, LS
    Pyatkin, AV
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 315 - 319
  • [25] Classification of edge-critical underlying absolute planar cliques for signed graphs
    Bensmail, Julien
    Nandi, Soumen
    Roy, Mithun
    Sen, Sagnik
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 77 : 117 - 135
  • [26] Graphs with large maximum degree containing no odd cycles of a given length
    Balister, P
    Bollobás, B
    Riordan, O
    Schelp, RH
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 87 (02) : 366 - 373
  • [27] On the average degree of critical graphs with maximum degree Six
    Miao, Lianying
    Qu, Jibin
    Sun, Qingbo
    DISCRETE MATHEMATICS, 2011, 311 (21) : 2574 - 2576
  • [28] The size of edge-critical uniquely 3-colorable planar graphs
    Matsumoto, Naoki
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):
  • [29] A Mobius-type gluing technique for obtaining edge-critical graphs
    Bonvicini, Simona
    Vietri, Andrea
    ARS MATHEMATICA CONTEMPORANEA, 2020, 19 (02) : 209 - 229
  • [30] On the size of critical graphs with maximum degree 8
    Miao Lianying
    Sun Qingbo
    DISCRETE MATHEMATICS, 2010, 310 (15-16) : 2215 - 2218