Investigation of the Stability and Convergence of Difference Schemes for a Polytropic Gas with Subsonic Flows

被引:5
|
作者
Matus, P. P. [1 ]
Chuiko, M. M. [1 ]
机构
[1] Natl Acad Sci, Inst Math, Minsk, BELARUS
关键词
Shock Wave; Initial Data; Difference Scheme; Burger Equation; Nonlinear Case;
D O I
10.1134/S0012266109070143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the stability with respect to the initial data and the convergence in the uniform norm of difference schemes approximating the equations of a polytropic gas in terms of the Riemann invariants. We obtain conditions on the initial data providing the presence of only subsonic flows and the absence of shock waves in the medium in the course of time. We discuss the relationship between the notions of stability and monotonicity of difference schemes for nonlinear problems. We present the results of a numerical experiment that justify the obtained theoretical conclusions.
引用
收藏
页码:1074 / 1085
页数:12
相关论文
共 50 条
  • [21] On the convergence of compact difference schemes
    Rogov B.V.
    Mikhailovskaya M.N.
    Mathematical Models and Computer Simulations, 2009, 1 (1) : 91 - 104
  • [22] Thermodynamic behavior and stability of Polytropic gas
    Moradpour, H.
    Abri, A.
    Ebadi, H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (01):
  • [23] Stability of a subsonic gas microjet
    V. M. Aniskin
    D. A. Bountin
    A. A. Maslov
    S. G. Mironov
    I. S. Tsyryul’nikov
    Technical Physics, 2012, 57 : 174 - 180
  • [24] Stability of a Subsonic Gas Microjet
    Aniskin, V. M.
    Bountin, D. A.
    Maslov, A. A.
    Mironov, S. G.
    Tsyryul'nikov, I. S.
    TECHNICAL PHYSICS, 2012, 57 (02) : 174 - 180
  • [25] STABILITY OF DIFFERENCE SCHEMES
    TOKHONOV, AN
    SAMARSKII, AA
    DOKLADY AKADEMII NAUK SSSR, 1963, 149 (03): : 529 - &
  • [26] ON STABILITY OF DIFFERENCE SCHEMES
    LAX, PD
    WENDROFF, B
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1962, 15 (04) : 1105 - &
  • [27] The convergence and stability of splitting finite-difference schemes for nonlinear evolutionary equations
    Radziunas M.
    Ivanauskas F.
    Lithuanian Mathematical Journal, 2005, 45 (3) : 334 - 352
  • [28] On stability and convergence of difference schemes for one class of parabolic equations with nonlocal condition
    Sapagovas, Mifodijus
    Novickij, Jurij
    Pupalaige, Kristina
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2025, 30 (01): : 135 - 155
  • [29] One-dimensional gas dynamics equations of a polytropic gas in Lagrangian coordinates: Symmetry classification, conservation laws, difference schemes
    Dorodnitsyn, V. A.
    Kozlov, R.
    Meleshko, S. V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 74 : 201 - 218
  • [30] RATE OF CONVERGENCE OF SOME DIFFERENCE SCHEMES
    HEDSTROM, GW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1968, 5 (02) : 363 - &