Electrogenerated Chemiluminescence Reporting on Closed Bipolar Microelectrodes and the Influence of Electrode Size

被引:33
|
作者
Oja, Stephen M. [1 ]
Zhang, Bo [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
来源
CHEMELECTROCHEM | 2016年 / 3卷 / 03期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
bipolar electrochemistry; electrogenerated chemiluminescence; microelectrodes; redox analytes; sensors; ELECTROCHEMILUMINESCENCE DETECTION; SYSTEM; OXIDATION; VOLTAMMETRY; EMISSION; PLATFORM; CELLS; ARRAY;
D O I
10.1002/celc.201500352
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report a fundamental study on the use of Ru(bpy)(3)(2+)-based electrogenerated chemiluminescence (ECL) as an optical reporting system for the detection of redox-active analytes on closed bipolar microelectrodes, focused on gaining an in-depth understanding of the correlation between the ECL emission intensity and the electrochemical current. We demonstrate the significant effect that the size of the anodic and cathodic poles has on the resulting ECL signal and show how this influences the quantitative detection of an analyte on a closed bipolar electrode. By carefully designing the geometry of the bipolar electrode, the detection performance of the system can be tuned to different analyte concentration ranges. We show that, through a simple voltammetric study of the individual reactions, one can understand the coupled bipolar behavior and accurately predict the ECL signal response to a range of analyte concentrations, enabling the accurate prediction of calibration curves.
引用
收藏
页码:457 / 464
页数:8
相关论文
共 50 条
  • [41] Highly sensitive electrogenerated chemiluminescence isoniazid with NiO nanoparticles-modified graphite electrode
    Li, Guixin
    Zheng, Xingwang
    ANALYTICAL LETTERS, 2007, 40 (10) : 1853 - 1863
  • [42] Reductive-Oxidation Electrogenerated Chemiluminescence (ECL) Generation at a Transparent Silver Nanowire Electrode
    Zhu, Yan
    Hill, Caleb M.
    Pan, Shanlin
    LANGMUIR, 2011, 27 (06) : 3121 - 3127
  • [43] Electrogenerated chemiluminescence of lucigenin at mesoporous platinum electrode and its biosensing application to superoxide dismutase
    Nam, Sungju
    Lee, Won-Yong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 808 : 59 - 64
  • [44] Catalytic Electrogenerated Chemiluminescence and Nitrate Reduction at CdS Nanotubes Modified Glassy Carbon Electrode
    Fang, Yi-Min
    Sun, Jian-Jun
    Wu, Ai-Hong
    Su, Xiu-Li
    Chen, Guo-Nan
    LANGMUIR, 2009, 25 (01) : 555 - 560
  • [45] MICRORING ELECTRODE OPTICAL WAVE-GUIDE - ELECTROCHEMICAL CHARACTERIZATION AND APPLICATION TO ELECTROGENERATED CHEMILUMINESCENCE
    KUHN, LS
    WEBER, A
    WEBER, SG
    ANALYTICAL CHEMISTRY, 1990, 62 (15) : 1631 - 1636
  • [46] Dual-Color Electrogenerated Chemiluminescence from Dispersions of Conductive Microbeads Addressed by Bipolar Electrochemistry
    de Poulpiquet, Anne
    Diez-Buitrago, Beatriz
    Milutinovic, Milena
    Goudeau, Bertrand
    Bouffier, Laurent
    Arbault, Stephane
    Kuhn, Alexander
    Sojic, Neso
    CHEMELECTROCHEM, 2016, 3 (03): : 404 - 409
  • [47] Single-Layer Graphene as a Stable and Transparent Electrode for Nonaqueous Radical Annihilation Electrogenerated Chemiluminescence
    Cristarella, Teresa C.
    Chinderle, Adam J.
    Hui, Jingshu
    Rodriguez-Lopez, Joaquin
    LANGMUIR, 2015, 31 (13) : 3999 - 4007
  • [48] Electrogenerated chemiluminescence detecting hydrochlorothiazide with self-assembly Ni(II)-polyluminol modified electrode
    Li Guixin
    Zheng Xingwang
    Zhang Zhujun
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2006, 34 (07) : 955 - 958
  • [49] Electrogenerated chemiluminescence of luminol at a carbon nanotube-perfluorosulfonate polymer (Nafion) modified gold electrode
    Dong, Yong-Ping
    JOURNAL OF LUMINESCENCE, 2010, 130 (08) : 1539 - 1545
  • [50] Detection of hydrogen peroxide with luminol electrogenerated chemiluminescence at mesoporous platinum electrode in neutral aqueous solution
    Han, Jee Noon
    Jang, Junho
    Kim, Byung Kun
    Choi, Han Nim
    Lee, Won-Yong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2011, 660 (01) : 101 - 107