A note on definition of matrix convex functions

被引:8
|
作者
Tikhonov, Oleg E. [1 ]
机构
[1] Kazan VI Lenin State Univ, Res Inst Math & Mech, Kazan 420008, Russia
基金
俄罗斯基础研究基金会;
关键词
matrix convex function; the Neumark theorem;
D O I
10.1016/j.laa.2005.12.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a real-valued function f defined on an interval S in R is matrix convex if and only if for any natural k, for all families of positive operators {A(i)}(k)(i=1) in a finite-dimensional Hilbert space, such that Sigma(k)(i=1) A(i)=1, and arbitrary numbers x(i) is an element of S, the inequality [GRAPHICS] holds true. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:773 / 775
页数:3
相关论文
共 50 条
  • [1] CONVEX MATRIX FUNCTIONS
    WATKINS, W
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) : 31 - 34
  • [2] On convex matrix functions
    Kraus, F
    MATHEMATISCHE ZEITSCHRIFT, 1936, 41 : 18 - 42
  • [3] A NOTE ON CONVEX AND BAZILEVIC FUNCTIONS
    NUNOKAWA, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 24 (02) : 332 - &
  • [4] A note on geometrically convex functions
    Muhamet Emin Özdemir
    Çetin Yildiz
    Mustafa Gürbüz
    Journal of Inequalities and Applications, 2014
  • [5] A note on generalized convex functions
    Syed Zaheer Ullah
    Muhammad Adil Khan
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2019
  • [6] A note on generalized convex functions
    Ullah, Syed Zaheer
    Adil Khan, Muhammad
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [7] A note on geometrically convex functions
    Ozdemir, Muhamet Emin
    Yildiz, Cetin
    Gurbuz, Mustafa
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [8] MATRIX-CONVEX FUNCTIONS
    OSTAPENKO, VV
    CYBERNETICS AND SYSTEMS ANALYSIS, 1994, 30 (02) : 252 - 258
  • [9] Matrix inequalities for convex functions
    La Trobe Univ, Bundoora
    J Math Anal Appl, 1 (147-153):
  • [10] Strongly convex matrix functions
    Sano, Takashi
    ACTA SCIENTIARUM MATHEMATICARUM, 2024, 90 (3-4): : 637 - 647