PO43- polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries

被引:246
|
作者
Zhang, H. Z. [1 ]
Qiao, Q. Q. [1 ]
Li, G. R. [1 ]
Gao, X. P. [1 ]
机构
[1] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin Key Lab Met & Mol Based Mat Chem, Inst New Energy Mat Chem, Tianjin 300071, Peoples R China
关键词
X-RAY-DIFFRACTION; ELECTROCHEMICAL PROPERTIES; CYCLING STABILITY; CO ELECTRODES; PERFORMANCE; MN; NI; LI1.2NI0.13CO0.13MN0.54O2; TRANSFORMATION; CAPACITY;
D O I
10.1039/c4ta00699b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advanced Li-ion batteries, with Li-rich layered oxides as cathode materials and Si-based composites as anode materials, are considered as high energy battery systems for the next generation of smart communications and electric vehicles (EVs). At the current stage, it is significant to develop Li-rich layered oxides with stable output energy density. However, the gradual capacity degradation and potential decay during cycling lead to the continual decrease in the energy density of Li-rich layered oxides. Therefore, a new strategy should be introduced to block the migration of transition metal cations and maintain the parent layered structure during cycling, in order to stabilize the energy density of oxides. In this work, large tetrahedral PO43- polyanions with high electronegativity with respect to O2- anions are doped into oxides for minimizing the local structure change during cycling. When doping with PO43- polyanions, the parent layered structure is retained during long cycling, due to the strong bonding of PO43- polyanions to transition metal cations (Ni especially). Correspondingly, PO43- polyanion-doped oxides present excellent energy density retention during long cycling, integrated with the discharge capacity and midpoint potential. These results suggest that polyanion-doping can meet the performance requirement of stabilizing the energy density of Li-rich layered oxides for advanced lithium ion batteries.
引用
收藏
页码:7454 / 7460
页数:7
相关论文
共 50 条
  • [31] Stabilizing Li-Rich Layered Cathode Materials Using a LiCoMnO4 Spinel Nanolayer for Li-Ion Batteries
    Lin, Hsiu-Fen
    Cheng, Si-Ting
    Chen, De-Zhen
    Wu, Nian-Ying
    Jiang, Zong-Xiao
    Chang, Chun-Ting
    NANOMATERIALS, 2022, 12 (19)
  • [32] Enhanced electrochemical performance of layered Li-rich cathode materials for lithium ion batteries via aluminum and boron dual-doping
    Peng, Zhongdong
    Mu, Kunchang
    Cao, Yanbing
    Xu, Lian
    Du, Ke
    Hu, Guorong
    CERAMICS INTERNATIONAL, 2019, 45 (04) : 4184 - 4192
  • [33] Performance and mechanism research of hierarchically structured Li-rich cathode materials for advanced lithium–ion batteries
    Shaomeng Ma
    Xianhua Hou
    Yajie Li
    Qiang Ru
    Shejun Hu
    Kwok-ho Lam
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 2705 - 2715
  • [34] Surface Modification of Li-Rich Cathode Materials for Lithium-Ion Batteries with a PEDOT:PSS Conducting Polymer
    Wu, Feng
    Liu, Jianrui
    Li, Li
    Zhang, Xiaoxiao
    Luo, Rui
    Ye, Yusheng
    Chen, Renjie
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (35) : 23095 - 23104
  • [35] Nickel-Rich Layered Cathode Materials for Lithium-Ion Batteries
    Ye, Zhengcheng
    Qiu, Lang
    Yang, Wen
    Wu, Zhenguo
    Liu, Yuxia
    Wang, Gongke
    Song, Yang
    Zhong, Benhe
    Guo, Xiaodong
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (13) : 4249 - 4269
  • [36] Synthesis and electrochemical performance of micro-sized Li-rich layered cathode material for Lithium-ion batteries
    Pan, Lingchao
    Xia, Yonggao
    Qiu, Bao
    Zhao, Hu
    Guo, Haocheng
    Jia, Kai
    Gu, Qingwen
    Liu, Zhaoping
    ELECTROCHIMICA ACTA, 2016, 211 : 507 - 514
  • [37] Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries
    Han, Dongwook
    Park, Kwangjin
    Park, Jun-Ho
    Yun, Dong-Jin
    Son, You-Hwan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 68 : 180 - 186
  • [38] Understanding the Origin of Li2MnO3 Activation in Li-Rich Cathode Materials for Lithium-Ion Batteries
    Ye, Delai
    Zeng, Guang
    Nogita, Kazuhiro
    Ozawa, Kiyoshi
    Hankel, Marlies
    Searles, Debra J.
    Wang, Lianzhou
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (48) : 7488 - 7496
  • [39] Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries
    Qiu, Bao
    Yin, Chong
    Xia, Yonggao
    Liu, Zhaoping
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) : 3661 - 3666
  • [40] Investigation on capacity decay of Li-rich LNMCO cathode material for lithium-ion batteries
    Guo, Fuling
    Chen, Wangchao
    Yang, Zhichao
    Shi, Chengwu
    Zhou, Zhuohang
    SYNTHETIC METALS, 2019, 258