Joint spectral radius and ternary hermite subdivision

被引:7
|
作者
Charina, M. [1 ]
Conti, C. [2 ]
Mejstrik, T. [1 ]
Merrien, J. -L. [3 ]
机构
[1] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Firenze, DIEF, Viale Morgagni 40-44, I-50134 Florence, Italy
[3] Univ Rennes, INSA Rennes, CNRS, IARMAR UMR 6625, F-35000 Rennes, France
基金
奥地利科学基金会;
关键词
Hermite subdivision; Hermite interpolation; Joint spectral radius; Taylor operator; SCHEMES; REGULARITY; MATRICES;
D O I
10.1007/s10444-021-09854-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct a family of ternary interpolatory Hermite subdivision schemes of order 1 with small support and HC2-smoothness. Indeed, leaving the binary domain, it is possible to derive interpolatory Hermite subdivision schemes with higher regularity than the existing binary examples. The family of schemes we construct is a two-parameter family whose HC2-smoothness is guaranteed whenever the parameters are chosen from a certain polygonal region. The construction of this new family is inspired by the geometric insight into the ternary interpolatory scalar three-point subdivision scheme by Hassan and Dodgson. The smoothness of our new family of Hermite schemes is proven by means of joint spectral radius techniques.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Extended Hermite subdivision schemes
    Merrien, Jean-Louis
    Sauer, Tomas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 343 - 361
  • [42] The spectral picture and joint spectral radius of the generalized spherical Aluthge transform
    Benhida, Chafiq
    Curto, Raill E.
    Lee, Sang Hoon
    Yoon, Jasang
    ADVANCES IN MATHEMATICS, 2022, 408
  • [43] Hermite subdivision schemes for manifold-valued Hermite data
    Vardi, Hofit Ben-Zion
    Dyn, Nira
    Sharon, Nir
    COMPUTER AIDED GEOMETRIC DESIGN, 2024, 111
  • [44] A limit formula for joint spectral radius with p-radius of probability distributions
    Ogura, M.
    Martin, C. F.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 605 - 625
  • [45] Analysis and design of Hermite subdivision schemes
    Bert Jüttler
    Ulrich Schwanecke
    The Visual Computer, 2002, 18 : 326 - 342
  • [46] Convergence of irregular Hermite subdivision schemes
    Zhao, Yao
    Chen, Di-Rong
    COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (05) : 372 - 381
  • [47] The joint spectral radius is pointwise Hölder continuous
    Epperlein, Jeremias
    Wirth, Fabian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 704 : 92 - 122
  • [48] The generalized joint spectral radius. A geometric approach
    Protasov, VY
    IZVESTIYA MATHEMATICS, 1997, 61 (05) : 995 - 1030
  • [49] Convergent vector and Hermite subdivision schemes
    Dubuc, S
    Merrien, JL
    CONSTRUCTIVE APPROXIMATION, 2006, 23 (01) : 1 - 22
  • [50] Hermite Subdivision Schemes and Taylor Polynomials
    Serge Dubuc
    Jean-Louis Merrien
    Constructive Approximation, 2009, 29 : 219 - 245