Preservation of High Frequency Content for Deep Learning-Based Medical Image Classification

被引:3
|
作者
McIntosh, Declan [1 ]
Marques, Tunai Porto [1 ]
Albu, Alexandra Branzan [1 ]
机构
[1] Univ Victoria, Elect & Comp Engn, Victoria, BC, Canada
关键词
wavelets; radiograph; convolutional neural networks; medical imaging; PNEUMONIA;
D O I
10.1109/CRV52889.2021.00010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Chest radiographs are used for the diagnosis of multiple critical illnesses (e.g., Pneumonia, heart failure, lung cancer), for this reason, systems for the automatic or semi-automatic analysis of these data are of particular interest. An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists, ultimately allowing for better medical care of lung-, heart-and chest-related conditions. We propose a novel DiscreteWavelet Transform (DWT)-based method for the efficient identification and encoding of visual information that is typically lost in the down-sampling of high-resolution radiographs, a common step in computer-aided diagnostic pipelines. Our proposed approach requires only slight modifications to the input of existing state-of-the-art Convolutional Neural Networks (CNNs), making it easily applicable to existing image classification frameworks. We show that the extra high-frequency components offered by our method increased the classification performance of several CNNs in benchmarks employing the NIH Chest-8 and ImageNet-2017 datasets. Based on our results we hypothesize that providing frequency-specific coefficients allows the CNNs to specialize in the identification of structures that are particular to a frequency band, ultimately increasing classification performance, without an increase in computational load. The implementation of our work is available at github.com/DeclanMcIntosh/LeGallCuda.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条
  • [41] Deep learning-based roadway crack classification with heterogeneous image data fusion
    Zhou, Shanglian
    Song, Wei
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2021, 20 (03): : 1274 - 1293
  • [42] Deep Learning-Based Carotid Plaque Ultrasound Image Detection and Classification Study
    Zhang, Hongzhen
    Zhao, Feng
    REVIEWS IN CARDIOVASCULAR MEDICINE, 2024, 25 (12)
  • [43] Deep Learning-Based Image Classification for Major Mosquito Species Inhabiting Korea
    Lee, Sangjun
    Kim, Hangi
    Cho, Byoung-Kwan
    INSECTS, 2023, 14 (06)
  • [44] A Generalizable Contour Validation Method Using Deep Learning-Based Image Classification
    Zhang, Y.
    Ceballos, F.
    Liang, Y.
    Buchanan, L.
    Li, X.
    MEDICAL PHYSICS, 2020, 47 (06) : E386 - E386
  • [45] Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images
    Noothout, Julia M. H.
    de Vos, Bob D.
    Wolterink, Jelmer M.
    Postma, Elbrich M.
    Smeets, Paul A. M.
    Takx, Richard A. P.
    Leiner, Tim
    Viergever, Max A.
    Isgum, Ivana
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (12) : 4011 - 4022
  • [46] A Novel Lightweight Deep Learning-Based Histopathological Image Classification Model for IoMT
    Koyel Datta Gupta
    Deepak Kumar Sharma
    Shakib Ahmed
    Harsh Gupta
    Deepak Gupta
    Ching-Hsien Hsu
    Neural Processing Letters, 2023, 55 : 205 - 228
  • [47] Deep Learning-Based Noise Type Classification and Removal for Drone Image Restoration
    Ahmed, Waqar
    Khan, Sajid
    Noor, Adeeb
    Mujtaba, Ghulam
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (03) : 4287 - 4306
  • [48] A Novel Lightweight Deep Learning-Based Histopathological Image Classification Model for IoMT
    Datta Gupta, Koyel
    Sharma, Deepak Kumar
    Ahmed, Shakib
    Gupta, Harsh
    Gupta, Deepak
    Hsu, Ching-Hsien
    NEURAL PROCESSING LETTERS, 2023, 55 (01) : 205 - 228
  • [49] Deep learning-based classification of dementia using image representation of subcortical signals
    Ranjan, Shivani
    Tripathi, Ayush
    Shende, Harshal
    Badal, Robin
    Kumar, Amit
    Yadav, Pramod
    Joshi, Deepak
    Kumar, Lalan
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2025, 25 (01)
  • [50] An Explainable Deep Learning-Based Classification Method for Facial Image Quality Assessment
    Gurjar, Kuldeep
    Kumar, Surjeet
    Bhavsar, Arnav
    Hamad, Kotiba
    Moon, Yang-Sae
    Yoon, Dae Ho
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2024, 20 (04): : 558 - 573