EULER CLASSES OF VECTOR BUNDLES OVER MANIFOLDS

被引:1
|
作者
Naolekar, Aniruddha C. [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, 8th Mile Mysore Rd,RVCE Post, Bangalore, Karnataka, India
关键词
Euler class; rational homology sphere;
D O I
10.1515/ms-2017-0461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E-k denote the set of diffeomorphism classes of closed connected smooth k-manifolds X with the property that for any oriented vector bundle alpha over X, the Euler class e(alpha) = 0. We show that if X is an element of E2n+1 is orientable, then X is a rational homology sphere and pi(1)(X) is perfect. We also show that E-8 = empty set and derive additional cohomlogical restrictions on orientable manifolds in E-k. (C) 2021 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:199 / 210
页数:12
相关论文
共 50 条
  • [21] Forms on vector bundles over compact real hyperbolic manifolds
    Bytsenko, AA
    Gonçalves, AE
    Williams, FL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (12): : 2041 - 2050
  • [22] On the stability of flat complex vector bundles over parallelizable manifolds
    Biswas, Indranil
    Dumitrescu, Sorin
    Lehn, Manfred
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (10) : 1030 - 1035
  • [23] Stability and holomorphic connections on vector bundles over LVMB manifolds
    Biswas, Indranil
    Dumitrescu, Sorin
    Meersseman, Laurent
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (02) : 151 - 157
  • [24] Manifolds polarized by vector bundles
    Marco Andreatta
    Carla Novelli
    Annali di Matematica Pura ed Applicata, 2007, 186 : 281 - 288
  • [25] Manifolds polarized by vector bundles
    Andreatta, Marco
    Novelli, Carla
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (02) : 281 - 288
  • [26] Vector bundles on Sasakian manifolds
    Biswas, Indranil
    Schumacher, Georg
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 14 (02) : 541 - 561
  • [27] A note on stable complex structures on real vector bundles over manifolds
    Yang, Huijun
    TOPOLOGY AND ITS APPLICATIONS, 2015, 189 : 1 - 9
  • [28] A REMARK ON THE STABLE REAL FORMS OF COMPLEX VECTOR BUNDLES OVER MANIFOLDS
    Yang, Huijun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (01) : 69 - 76
  • [29] Entropy bounds for forms on vector bundles over compact hyperbolic manifolds
    Bytsenko, AA
    Mendes, VS
    Tort, AC
    QFEXT'03: QUANTUM FIELD THEORY UNDER THE INFLUENCE OF EXTERNAL CONDITIONS, PROCEEDINGS, 2004, : 381 - 386
  • [30] Ricci-Flat Metrics on Vector Bundles Over Flag Manifolds
    Achmed-Zade, Ismail
    Bykov, Dmitri
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (03) : 2309 - 2328