The Hochschild cohomology ring of any associative algebra, together with the Hochschild homology, forms a structure of calculus. This was proved in Daletski et al. (1990) [1]. In this paper, we compute the calculus structure for the preprojective algebras of Dynkin quivers over a field of characteristic zero, using the Batalin-Vilkovisky structure of the Hochschild cohomology. Together with the results of Crawley-Boevey et al. [2], where the Batalin-Vilkovisky structure is computed for non-ADE quivers (and the calculus can be easily computed from that), this work gives us a complete description of the calculus for any quiver. (C) 2009 Published by Elsevier B.V.
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Guccione, JA
Guccione, JJ
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
机构:
Kobe Univ, Grad Sch Human Dev & Environm, 3-11 Tsurukabuto,Nada Ku, Kobe 6578501, JapanKobe Univ, Grad Sch Human Dev & Environm, 3-11 Tsurukabuto,Nada Ku, Kobe 6578501, Japan
Aoki, Toshitaka
Mizuno, Yuya
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Metropolitan Univ, Fac Liberal Arts Sci & Global Educ, 1-1 Gakuen Cho,Naka Ku, Sakai, Osaka 5998531, JapanKobe Univ, Grad Sch Human Dev & Environm, 3-11 Tsurukabuto,Nada Ku, Kobe 6578501, Japan