Hamilton cycles in digraphs of unitary matrices

被引:0
|
作者
Gutin, G. [1 ]
Rafiey, A.
Severini, S.
Yeo, A.
机构
[1] Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[3] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
关键词
digraph; Hamilton cycle; sufficient conditions; conjecture; quantum mechanics; quantum computing;
D O I
10.1016/j.disc.2006.06.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S subset of V is called a q(+)-set (q(-)-set, respectively) if S has at least two vertices and, for every u is an element of S, there exists nu is an element of S, nu not equal u such that N+(u) boolean AND N+(nu) not equal 0 (N-(u) boolean AND N-(nu) not equal 0, respectively). A digraph D is called s-quadrangular if, for every q+-set S, we have vertical bar U{N+(u) boolean AND N+(nu) : u not equal v, u, nu is an element of S}vertical bar >= vertical bar S vertical bar and, for every q(-)-set S, we have vertical bar U {N- (u) boolean AND N- (nu) : u, nu is an element of S}vertical bar >= vertical bar S vertical bar. We conjecture that every strong s-quadrangular digraph has a Hamilton cycle and provide some support for this conjecture. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3315 / 3320
页数:6
相关论文
共 50 条