Hamilton cycles in digraphs of unitary matrices

被引:0
|
作者
Gutin, G. [1 ]
Rafiey, A.
Severini, S.
Yeo, A.
机构
[1] Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[3] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
关键词
digraph; Hamilton cycle; sufficient conditions; conjecture; quantum mechanics; quantum computing;
D O I
10.1016/j.disc.2006.06.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S subset of V is called a q(+)-set (q(-)-set, respectively) if S has at least two vertices and, for every u is an element of S, there exists nu is an element of S, nu not equal u such that N+(u) boolean AND N+(nu) not equal 0 (N-(u) boolean AND N-(nu) not equal 0, respectively). A digraph D is called s-quadrangular if, for every q+-set S, we have vertical bar U{N+(u) boolean AND N+(nu) : u not equal v, u, nu is an element of S}vertical bar >= vertical bar S vertical bar and, for every q(-)-set S, we have vertical bar U {N- (u) boolean AND N- (nu) : u, nu is an element of S}vertical bar >= vertical bar S vertical bar. We conjecture that every strong s-quadrangular digraph has a Hamilton cycle and provide some support for this conjecture. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3315 / 3320
页数:6
相关论文
共 50 条
  • [1] ORIENTED HAMILTON CYCLES IN DIGRAPHS
    HAGGKVIST, R
    THOMASON, A
    JOURNAL OF GRAPH THEORY, 1995, 19 (04) : 471 - 479
  • [2] ARBITRARY ORIENTATIONS OF HAMILTON CYCLES IN DIGRAPHS
    Debiasio, Louis
    Kuehn, Daniela
    Molla, Theodore
    Osthus, Deryk
    Taylor, Amelia
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) : 1553 - 1584
  • [3] DIRECTED HAMILTON CYCLES IN DIGRAPHS AND MATCHING ALTERNATING HAMILTON CYCLES IN BIPARTITE GRAPHS
    Zhang, Zan-Bo
    Zhang, Xiaoyan
    Wen, Xuelian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 274 - 289
  • [4] COUNTING THE NUMBER OF HAMILTON CYCLES IN RANDOM DIGRAPHS
    FRIEZE, A
    SUEN, S
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) : 235 - 241
  • [5] Finding hamilton cycles in robustly expanding digraphs
    Christofides, Demetres
    Keevash, Peter
    Kühn, Daniela
    Osthus, Deryk
    Journal of Graph Algorithms and Applications, 2012, 16 (02) : 335 - 358
  • [6] k-Ordered Hamilton cycles in digraphs
    Kuehn, Daniela
    Cisthus, Deryk
    Young, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (06) : 1165 - 1180
  • [7] A SEMIEXACT DEGREE CONDITION FOR HAMILTON CYCLES IN DIGRAPHS
    Christofides, Demetres
    Keevash, Peter
    Kuehn, Daniela
    Osthus, Deryk
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (03) : 709 - 756
  • [8] Hamilton cycles in sparse robustly expanding digraphs
    Lo, Allan
    Patel, Viresh
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (03):
  • [9] Hamilton cycles in dense regular digraphs and oriented graphs
    Lo, Allan
    Patel, Viresh
    Yildiz, Mehmet Akif
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 164 : 119 - 160
  • [10] Notes on a conjecture of Manoussakis concerning Hamilton cycles in digraphs
    Ning, Bo
    INFORMATION PROCESSING LETTERS, 2015, 115 (02) : 221 - 224