Solving fractional Black-Scholes equation by using Boubaker functions

被引:8
|
作者
Khajehnasiri, A. A. [1 ]
Safavi, M. [2 ]
机构
[1] Islamic Azad Univ, North Tehran Branch, Dept Math, Tehran, Iran
[2] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
关键词
Black– Scholes equation; Boubaker functions; fractional calculus; operational calculus; DIFFERENTIAL-EQUATIONS; OPERATIONAL SOLUTION; NUMERICAL-SOLUTION; SPACE; MODEL;
D O I
10.1002/mma.7270
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional Black-Scholes pricing model widely appears in financial markets. This paper presents the special class of operational matrix to approximate the solution of fractional Black-Scholes equation based on the Boubaker polynomial functions. The Boubaker operational matrix of the fractional derivative converts the model to obtain the numerical solution of the time-fractional Black-Scholes equation. The numerical results are displayed in some tables for better illustration with testing in some examples.
引用
收藏
页码:8505 / 8515
页数:11
相关论文
共 50 条
  • [31] NUMERICAL APPROXIMATION OF BLACK-SCHOLES EQUATION
    Dura, Gina
    Mosneagu, Ana-Maria
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (01): : 39 - 64
  • [32] CHAOTIC SOLUTION FOR THE BLACK-SCHOLES EQUATION
    Emamirad, Hassan
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (06) : 2043 - 2052
  • [33] Conserved densities of the Black-Scholes equation
    Qin, MC
    Mei, FX
    Shang, M
    CHINESE PHYSICS LETTERS, 2005, 22 (04) : 785 - 786
  • [34] Touchard wavelet technique for solving time-fractional Black-Scholes model
    Nourian, Farshid
    Lakestani, Mehrdad
    Sabermahani, Sedigheh
    Ordokhani, Yadollah
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [35] Numerical Solution of Black-Scholes Equation Using Bernstein Multi-Scaling Functions
    Moradipour, M.
    Yousefi, S. A.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2015, 15 (04): : 272 - 280
  • [36] On analytical solutions of the Black-Scholes equation
    Bohner, Martin
    Zheng, Yao
    APPLIED MATHEMATICS LETTERS, 2009, 22 (03) : 309 - 313
  • [37] SOLUTION TO A NONLINEAR BLACK-SCHOLES EQUATION
    Mariani, Maria Cristina
    Ncheuguim, Emmanuel K.
    SenGupta, Indranil
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [38] Some Notes to Black-Scholes Equation
    Lukas, Ladislav
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2005, 2005, : 233 - 237
  • [39] BUBBLES, CONVEXITY AND THE BLACK-SCHOLES EQUATION
    Ekstrom, Erik
    Tysk, Johan
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (04): : 1369 - 1384
  • [40] Conservation laws for the Black-Scholes equation
    Edelstein, R. M.
    Govinder, K. S.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (06) : 3372 - 3380