Local existence of solutions of a three phase-field model for solidification

被引:3
|
作者
Calsavara Caretta, Bianca Morelli [1 ]
Boldrini, Jose Luiz [1 ]
机构
[1] Univ Estadual Campinas, BR-13081970 Campinas, SP, Brazil
关键词
parabolic equation; existence of solution; solidification; alloy; phase field; TEMPERATURE; BOUNDARY; SYSTEMS; ALLOY;
D O I
10.1002/mma.1094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we discuss the local existence and uniqueness of solutions of a system of parabolic differential partial equations modeling the process of solidification/melting of a certain kind of alloy. This model governs the evolution of the temperature field, as well as the evolution of three phase-field functions; the first two describe two different possible solid crystallization states and the last one describes the liquid state. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1496 / 1518
页数:23
相关论文
共 50 条
  • [41] A phase-field model for non-equilibrium solidification of intermetallics
    Assadi, H.
    ACTA MATERIALIA, 2007, 55 (15) : 5225 - 5235
  • [42] Phase-field model of isothermal solidification with multiple grain growth
    Feng, Li
    Wang, Zhi-Ping
    Zhu, Chang-Sheng
    Lu, Yang
    CHINESE PHYSICS B, 2009, 18 (05) : 1985 - 1990
  • [43] Phase-field model for solidification of Fe-C alloys
    Ode, M.
    Suzuki, T.
    Kim, S. G.
    Kim, W. T.
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2000, 1 (01) : 43 - 49
  • [44] Phase-field model for the isothermal solidification process of a binary alloy
    Kessler, Daniel
    Krüger, Olivier
    Rappaz, Jacques
    Scheid, Jean-François
    Computer Assisted Mechanics and Engineering Sciences, 2000, 7 (03): : 279 - 288
  • [45] Periodic Solutions of a Phase-Field Model with Hysteresis
    Bin, Chen
    Timoshin, Sergey A.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (01):
  • [46] Towards a Physically Consistent Phase-Field Model for Alloy Solidification
    Bollada, Peter C.
    Jimack, Peter K.
    Mullis, Andrew M.
    METALS, 2022, 12 (02)
  • [47] Forces due to fluctuations in the anisotropic phase-field model of solidification
    Pavlik, SG
    Sekerka, RF
    PHYSICA A, 1999, 268 (3-4): : 283 - 290
  • [48] Phase-field models for eutectic solidification
    Lewis, D
    Pusztai, T
    Gránásy, L
    Warren, J
    Boettinger, W
    JOM, 2004, 56 (04) : 34 - 39
  • [49] Why Solidification? Why Phase-Field?
    Steinbach, Ingo
    JOM, 2013, 65 (09) : 1096 - 1102
  • [50] Phase-field modeling of eutectic solidification
    Kim, SG
    Kim, WT
    Suzuki, T
    Ode, M
    JOURNAL OF CRYSTAL GROWTH, 2004, 261 (01) : 135 - 158