ERDELYI-KOBER FRACTIONAL INTEGRALS AND RADON TRANSFORMS FOR MUTUALLY ORTHOGONAL AFFINE PLANES

被引:2
|
作者
Rubin, Boris [1 ]
Wang, Yingzhan [2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Erdelyi-Kober fractional integrals; Radon transforms; Grassmann manifolds;
D O I
10.1515/fca-2020-0050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply Erdelyi-Kober fractional integrals to the study of Radon type transforms that take functions on the Grassmannian of j-dimensional affine planes in R-n to functions on a similar manifold of k-dimensional planes by integration over the set of all j-planes that meet a given k-plane at a right angle. We obtain explicit inversion formulas for these transforms in the class of radial functions under minimal assumptions for all admissible dimensions. The general (not necessarily radial) case, but for j+ k = n - 1, n odd, was studied by S. Helgason [8] and F. Gonzalez [4, 5] on smooth compactly supported functions.
引用
收藏
页码:967 / 979
页数:13
相关论文
共 50 条