Decay of the distance autocorrelation and Lyapunov exponents

被引:21
|
作者
Mendes, C. F. O. [1 ]
da Silva, R. M. [1 ]
Beims, M. W. [1 ,2 ]
机构
[1] Univ Fed Parana, Dept Fis, BR-81531980 Curitiba, Parana, Brazil
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
关键词
COVARIANCE; MODEL;
D O I
10.1103/PhysRevE.99.062206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work presents numerical evidence that for discrete dynamical systems with one positive Lyapunov exponent the decay of the distance autocorrelation is always related to the Lyapunov exponent. Distinct decay laws for the distance autocorrelation are observed for different systems, namely, exponential decays for the quadratic map, logarithmic for the Henon map, and power-law for the conservative standard map. In all these cases the decay exponent is close to the positive Lyapunov exponent. For hyperchaotic conservative systems the power-law decay of the distance autocorrelation is not directly related to any Lyapunov exponent.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] ISENTROPES AND LYAPUNOV EXPONENTS
    Buczolich, Zoltan
    Keszthelyi, Gabriella
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) : 1989 - 2009
  • [22] Differentiability of Lyapunov Exponents
    Thiago F. Ferraiol
    Luiz A. B. San Martin
    Journal of Dynamical and Control Systems, 2020, 26 : 289 - 310
  • [23] Quantum Lyapunov Exponents
    P. Falsaperla
    G. Fonte
    G. Salesi
    Foundations of Physics, 2002, 32 : 267 - 294
  • [24] Asymptotic stability of structural systems based on lyapunov exponents and moment Lyapunov exponents
    Doyle, MM
    Namachchivaya, NS
    VanRoessel, HJ
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1997, 32 (04) : 681 - 692
  • [25] On Khintchine exponents and Lyapunov exponents of continued fractions
    Fan, Ai-Hua
    Liao, Ling-Min
    Wang, Bao-Wei
    Wu, Jun
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 73 - 109
  • [26] Lyapunov exponents for expansive homeomorphisms
    Pacifico, M. J.
    Vieitez, J. L.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (02) : 413 - 425
  • [27] LYAPUNOV EXPONENTS AND CONTINUUM KINEMATICS
    BERGER, BS
    ROKNI, M
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1987, 25 (10) : 1251 - 1257
  • [28] Universal scaling of Lyapunov exponents
    J Phys A Math Gen, 10 (3441):
  • [29] LYAPUNOV EXPONENTS OF CONTROL FLOWS
    COLONIUS, F
    KLIEMANN, W
    LECTURE NOTES IN MATHEMATICS, 1991, 1486 : 331 - 365
  • [30] LYAPUNOV EXPONENTS AND CONTINUUM KINEMATICS
    BERGER, BS
    ROKNI, M
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1987, 25 (08) : 1079 - 1084