On connectivity of fibers with positive marginals in multiple logistic regression

被引:59
|
作者
Hara, Hisayuki [1 ]
Takemura, Akimichi [2 ,3 ]
Yoshida, Ruriko [4 ]
机构
[1] Univ Tokyo, Dept Technol Management Innovat, Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Bunkyo Ku, Tokyo 1138656, Japan
[3] JST, CREST, Tokyo, Japan
[4] Univ Kentucky, Dept Stat, Lexington, KY 40506 USA
关键词
Contingency tables; Lawrence lifting; Markov bases; MCMC; Segre product; CONTINGENCY-TABLES; BASES;
D O I
10.1016/j.jmva.2009.12.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider exact tests of a multiple logistic regression with categorical covariates via Markov bases. In many applications of multiple logistic regression, the sample size is positive for each combination of levels of the covariates. In this case we do not need a whole Markov basis, which guarantees connectivity of all fibers. We first give an explicit Markov basis for multiple Poisson regression. By the Lawrence lifting of this basis, in the case of bivariate logistic regression, we show a simple subset of the Markov basis which connects all fibers with a positive sample size for each combination of levels of covariates. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:909 / 925
页数:17
相关论文
共 50 条
  • [21] Multiple Comparisons for a Psychophysical Test in Bootstrap Logistic Regression
    Mita, Norihiro
    Sasaki, Hiroshi
    Kani, Kazutaka
    Tabuchi, Akio
    Hara, Heihachiro
    [J]. JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2014, 8 (03) : 339 - 355
  • [22] Valid Statistical Analysis for Logistic Regression with Multiple Sources
    Fienberg, Stephen E.
    Nardi, Yuval
    Slavkovic, Aleksandra B.
    [J]. PROTECTING PERSONS WHILE PROTECTING THE PEOPLE, 2009, 5661 : 82 - +
  • [23] LOGISTIC-REGRESSION AND MULTIPLE-SCLEROSIS - REPLY
    NORMAN, JE
    [J]. JOURNAL OF CHRONIC DISEASES, 1985, 38 (04): : 373 - 373
  • [24] Revisiting Strategies for Fitting Logistic Regression for Positive and Unlabeled Data
    WAWRZENCZYK, A. D. A. M.
    MIELNICZUK, J. A. N.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2022, 32 (02) : 299 - 309
  • [25] THE LOGISTIC-REGRESSION MODEL AND THE ODDS OF TESTING HIV POSITIVE
    YARANDI, HN
    SIMPSON, SH
    [J]. NURSING RESEARCH, 1991, 40 (06) : 372 - 373
  • [26] Different Strategies of Fitting Logistic Regression for Positive and Unlabelled Data
    Teisseyre, Pawel
    Mielniczuk, Jan
    Lazecka, Malgorzata
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT IV, 2020, 12140 : 3 - 17
  • [27] Positive vector measures with given marginals
    Khurana, Surjit Singh
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (02) : 613 - 619
  • [28] Positive vector measures with given marginals
    Surjit Singh Khurana
    [J]. Czechoslovak Mathematical Journal, 2006, 56 : 613 - 619
  • [29] Correction for measurement error in multiple logistic regression: A simulation study
    Thoresen, M
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (06) : 475 - 487
  • [30] milr: Multiple-Instance Logistic Regression with Lasso Penalty
    Chen, Ping-Yang
    Chen, Ching-Chuan
    Yang, Chun-Hao
    Chang, Sheng-Mao
    Lee, Kuo-Jung
    [J]. R JOURNAL, 2017, 9 (01): : 446 - 457