Statistical properties of the Green function in finite size for Anderson localization models with multifractal eigenvectors

被引:10
|
作者
Monthus, Cecile [1 ]
机构
[1] Univ Paris Saclay, CEA, CNRS, Inst Phys Theor, F-91191 Gif Sur Yvette, France
关键词
localization; multifractality; Green function; local density of states; LEVEL CURVATURE DISTRIBUTION; CRITICAL-BEHAVIOR; ENERGY-LEVELS; EIGENVALUE CURVATURES; PARAMETRIC MOTION; VIBRATIONAL-MODES; QUANTUM; DELOCALIZATION; CONDUCTANCES; UNIVERSALITY;
D O I
10.1088/1751-8121/aa5ad2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For Anderson localization models with multifractal eigenvectors on disordered samples containing N sites, we analyze in a unified framework the consequences for the statistical properties of the Green function. We focus in particular on the imaginary part of the Green function at coinciding points G(xx)(I)( E - i eta) I and study the scaling with the size N of the moments of arbitrary indices q when the broadening follows the scaling eta = c/N-delta For thestandard scaling regime delta = 1, we find in the two limits c e 1 and c c 1 that the moments are governed by the anomalous exponents Delta(q) of individual eigenfunctions, without the assumption of strong correlations between the weights of consecutive eigenstates at the same point. For the non- standard scaling regimes 0< delta < 1, we obtain that the imaginary Green function follows some Frechet distribution in the typical region, while rare events are important to obtain the scaling of the moments. We describe the application to the case of Gaussian multifractality and to the case of linear multifractality.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Multifractal finite-size scaling and universality at the Anderson transition
    Rodriguez, Alberto
    Vasquez, Louella J.
    Slevin, Keith
    Roemer, Rudolf A.
    [J]. PHYSICAL REVIEW B, 2011, 84 (13):
  • [2] FINITE SIZE SCALING APPROACH TO ANDERSON LOCALIZATION
    PICHARD, JL
    SARMA, G
    [J]. JOURNAL DE PHYSIQUE, 1981, 42 (NC4): : 37 - 45
  • [3] FINITE SIZE SCALING APPROACH TO ANDERSON LOCALIZATION
    PICHARD, JL
    SARMA, G
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (06): : L127 - L132
  • [4] SPATIAL MULTIFRACTAL PROPERTIES OF WAVE-PACKETS IN THE ANDERSON MODEL OF LOCALIZATION
    GRUSSBACH, H
    SCHREIBER, M
    [J]. PHYSICAL REVIEW B, 1993, 48 (09): : 6650 - 6653
  • [5] Multifractal finite-size scaling at the Anderson transition in the unitary symmetry class
    Lindinger, Jakob
    Rodriguez, Alberto
    [J]. PHYSICAL REVIEW B, 2017, 96 (13)
  • [6] Localization Criteria for Anderson Models on Locally Finite Graphs
    Martin Tautenhahn
    [J]. Journal of Statistical Physics, 2011, 144 : 60 - 75
  • [7] Localization Criteria for Anderson Models on Locally Finite Graphs
    Tautenhahn, Martin
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (01) : 60 - 75
  • [8] Probing the statistical properties of Anderson localization with quantum emitters
    Smolka, Stephan
    Thyrrestrup, Henri
    Sapienza, Luca
    Lehmann, Tau B.
    Rix, Kristian R.
    Froufe-Perez, Luis S.
    Garcia, Pedro D.
    Lodahl, Peter
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [9] Anderson localization regime in carbon nanotubes: size dependent properties
    Flores, F.
    Biel, B.
    Rubio, A.
    Garcia-Vidal, F. J.
    Gomez-Navarro, C.
    de Pablo, P.
    Gomez-Herrero, J.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (30)
  • [10] FINITE-SIZE SCALING AND CRITICAL EXPONENTS - A NEW APPROACH AND ITS APPLICATION TO ANDERSON LOCALIZATION
    HOFSTETTER, E
    SCHREIBER, M
    [J]. EUROPHYSICS LETTERS, 1993, 21 (09): : 933 - 939