SU(1,1) coherent states for Dirac-Kepler-Coulomb problem in D+1 dimensions with scalar and vector potentials

被引:3
|
作者
Ojeda-Guillen, D. [1 ]
Mota, R. D. [2 ]
Granados, V. D. [1 ]
机构
[1] Inst Politecn Nacl, Escuela Super Fis & Maternat, Unidad Profes Adolfo Lopez Mateos, Mexico City 07738, DF, Mexico
[2] Inst Politecn Nacl, Escudo Super Ingn Mecan & Elect, Unidad Culhuacan, Mexico City 04430, DF, Mexico
关键词
Lie algebras; Coherent states; Dirac equation; Scalar-vector potentials; Higher dimensions; RELATIVISTIC HYDROGEN-ATOM; UNIFIED TREATMENT; LADDER OPERATORS; SUPERSYMMETRY; EQUATION; SU(2); REPRESENTATIONS; ALGEBRA;
D O I
10.1016/j.physleta.2014.08.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We decouple the Dirac's radial equations in D + 1 dimensions with Coulomb-type scalar and vector potentials through appropriate transformations. We study each of these uncoupled second-order equations in an algebraic way by using an su(1, 1) algebra realization. Based on the theory of irreducible representations, we find the energy spectrum and the radial eigenfunctions. We construct the Perelomov coherent states for the Sturmian basis, which is the basis for the unitary irreducible representation of the su(1, 1) Lie algebra. The physical radial coherent states for our problem are obtained by applying the inverse original transformations to the Sturmian coherent states. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2931 / 2937
页数:7
相关论文
共 50 条
  • [21] Quantum Fisher Information for su (2) Atomic Coherent States and su (1,1) Coherent States
    Song, Qi
    Liu, Honggang
    Zhao, Yuefeng
    Zeng, Yan
    Wang, Gangcheng
    Xue, Kang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (03) : 1679 - 1685
  • [22] About a new family of coherent states for some SU(1,1) central field potentials
    Popov, Dusan
    Sajfert, Vjekoslav
    Pop, Nicolina
    Chiritoiu, Viorel
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
  • [23] SU(1,1) coherent states as Bessel-Gauss states
    Hacyan, S.
    REVISTA MEXICANA DE FISICA, 2008, 54 (06) : 451 - 453
  • [24] ON THE STATISTICS OF SU(1,1)(Q) AND SU(2)(Q) COHERENT STATES
    JING, SC
    FAN, HY
    MODERN PHYSICS LETTERS A, 1995, 10 (08) : 687 - 694
  • [25] Entangled coherent states for systems with SU(2) and SU(1,1) symmetries
    Wang, XG
    Sanders, BC
    Pan, SH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (41): : 7451 - 7467
  • [26] Maximally Entangled SU(1,1) Semi Coherent States
    Obada, A. -S. F.
    Ahmed, M. M. A.
    Ali, Hoda A.
    Abd-Elnabi, Somia
    Sanad, S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (04) : 1425 - 1437
  • [27] Maximally Entangled SU(1,1) Semi Coherent States
    A.-S. F. Obada
    M. M. A. Ahmed
    Hoda A. Ali
    Somia Abd-Elnabi
    S. Sanad
    International Journal of Theoretical Physics, 2021, 60 : 1425 - 1437
  • [28] Statistical properties of the nonlinear SU(1,1) coherent states
    Song, TQ
    Fan, HY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (05) : 593 - 596
  • [29] THE UNIVERSAL PROPAGATOR FOR AFFINE [OR SU(1,1)] COHERENT STATES
    KLAUDER, JR
    TOME, WA
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) : 3700 - 3709
  • [30] Two-mode coherent states for SU(1,1)⊗SU(1,1) -: art. no. 033812
    Gerry, CC
    Benmoussa, A
    PHYSICAL REVIEW A, 2000, 62 (03): : 15