Microstructure and Mechanical Properties of Face-Centered-Cubic-Based Cr-Free Equiatomic High-Entropy Alloys

被引:4
|
作者
Liu, Xinwang [1 ,2 ]
Liu, Peng [2 ]
Zhang, Weibin [3 ]
Hu, Qiang [4 ]
Chen, Qiang [5 ]
Gao, Niu [2 ]
Tu, Zeli [2 ]
Fan, Zitian [2 ]
Liu, Gang [6 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Precis Hot Proc Met, Harbin 150001, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[3] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China
[4] Jiangxi Acad Sci, Inst Appl Phys, Nanchang 330029, Jiangxi, Peoples R China
[5] Southwest Technol & Engn Res Inst, Chongqing 400039, Peoples R China
[6] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
face-centered-cubic crystals; high-entropy alloys; microstructures; segregations; tensile properties; CU-RICH PHASE; SOLID-SOLUTION; TENSILE PROPERTIES; PRECIPITATION; CRMNFECONI; BEHAVIORS; STABILITY; EVOLUTION; DESIGN; SEGREGATION;
D O I
10.1002/adem.202000848
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloys (HEAs) with face-centered-cubic (FCC) structures, e.g., the typical CrMnFeCoNi HEA, have a strong tendency to precipitate brittle sigma phases, as Cr is a strong sigma stabilizer. To develop HEAs with alleviated concerns of sigma phases, Cu for Cr in the Cr-Mn-Fe-Co-Ni HEA system is substituted to form a Mn-Fe-Co-Ni-Cu system. The quinary alloy and its quaternary subsets are investigated all in as-cast state. Microstructure evolution, phase constituent, and tensile properties at room temperature are studied. The HEAs have multi-phase FCC structures with slightly different lattice constants and spherical Cu-rich particles are observed in most systems. All alloys exhibit dendrite-like morphology with Cu segregation in interdendritic regions due to the solute partitioning. The investigated HEAs show good strengths, large elongations, and work hardening capability. The strengths are attributed to combined mechanisms, especially the precipitation strengthening by Cu-rich particles. The findings provide some model HEA systems for further usefully guiding design in the widely compositional space of Cr-free HEAs.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Evolution of Microstructure and Mechanical Properties of the CoFeNiMnMox High-Entropy Alloys
    Liu, Yongqin
    Zhu, Man
    Yao, Lijuan
    Jian, Zengyun
    CRYSTALS, 2022, 12 (08)
  • [32] Microstructure and Mechanical Properties of TaNbVTiAlx Refractory High-Entropy Alloys
    Xiang, Li
    Guo, Wenmin
    Liu, Bin
    Fu, Ao
    Li, Jianbo
    Fang, Qihong
    Liu, Yong
    ENTROPY, 2020, 22 (03)
  • [33] Physical properties of face-centered cubic structured high-entropy alloys: Effects of NiCo, NiFe, and NiCoFe alloying with Mn, Cr, and Pd
    Bag, Pallab
    Su, Yi-Cheng
    Kuo, Yung-Kang
    Lai, Yi-Cheng
    Wu, Shyi-Kaan
    PHYSICAL REVIEW MATERIALS, 2021, 5 (08)
  • [34] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    QU HuaiZhi
    GONG MingLong
    LIU FengFang
    GAO BingYu
    BAI Jing
    GAO QiuZhi
    LI Song
    Science China(Technological Sciences), 2020, (03) : 459 - 466
  • [35] Effects of Cr Content on Microstructure and Mechanical Properties of Co-Free FeCryNiAl0.8 High-Entropy Alloys
    Cui, Puchang
    Wang, Wei
    Nong, Zhisheng
    Lai, Zhonghong
    Liu, Yong
    Zhu, Jingchuan
    MATERIALS, 2023, 16 (09)
  • [36] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    HuaiZhi Qu
    MingLong Gong
    FengFang Liu
    BingYu Gao
    Jing Bai
    QiuZhi Gao
    Song Li
    Science China Technological Sciences, 2020, 63 : 459 - 466
  • [37] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    Qu, HuaiZhi
    Gong, MingLong
    Liu, FengFang
    Gao, BingYu
    Bai, Jing
    Gao, QiuZhi
    Li, Song
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (03) : 459 - 466
  • [38] Microstructure and Mechanical Properties of Ti-Al-Ni-Cr-Co-Fe-Based High-Entropy Alloys
    Sekhar, R. Anand
    Bakshi, Srinivasa Rao
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2019, 72 (06) : 1413 - 1416
  • [39] The Microstructure and Mechanical Properties of Refractory High-Entropy Alloys with High Plasticity
    Chen, Yiwen
    Li, Yunkai
    Cheng, Xingwang
    Wu, Chao
    Cheng, Bo
    Xu, Ziqi
    MATERIALS, 2018, 11 (02)
  • [40] Microstructure and Mechanical Properties of Ti–Al–Ni–Cr–Co–Fe-Based High-Entropy Alloys
    R. Anand Sekhar
    Srinivasa Rao Bakshi
    Transactions of the Indian Institute of Metals, 2019, 72 : 1413 - 1416