Soliton and Breather Solutions for the Mixed Nonlinear Schrodinger Equation via N-Fold Darboux Transformation

被引:3
|
作者
Hao, Hui-Qin [1 ]
Zhang, Jian-Wen [1 ]
Guo, Rui [1 ]
机构
[1] Taiyuan Univ Technol, Sch Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
KERR LAW MEDIA; OPTICAL-FIBERS; PERTURBATION;
D O I
10.1155/2014/348796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under investigation in this paper is the mixed nonlinear Schr "odinger equation, which describes the propagation of the subpicosecond or femtosecond optical pulse in a monomodal optical fiber. The Darboux transformation is constructed and N- times iterative potential formula is presented. Two-soliton and breather solutions are derived on the vanishing and two types of nonvanishing backgrounds: the continuous wave(cw) background and constant background, respectively. The dynamic features of the solitons and breathers are discussed via analytic solutions and graphical illustration.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] The determinant representation of an N-fold Darboux transformation for the short pulse equation
    Liu, Shuzhi
    Wang, Lihong
    Liu, Wei
    Qiu, Deqin
    He, Jingsong
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2017, 24 (02) : 183 - 194
  • [32] Darboux transformation of a new generalized nonlinear Schrödinger equation: soliton solutions, breather solutions, and rogue wave solutions
    Yaning Tang
    Chunhua He
    Meiling Zhou
    Nonlinear Dynamics, 2018, 92 : 2023 - 2036
  • [33] Optical soliton solutions for two coupled nonlinear Schrodinger systems via Darboux transformation
    Zhang, Hai-Qiang
    Li, Juan
    Xu, Tao
    Zhang, Ya-Xing
    Hu, Wei
    Tian, Bo
    PHYSICA SCRIPTA, 2007, 76 (05) : 452 - 460
  • [34] The determinant representation of an N-fold Darboux transformation for the short pulse equation
    Shuzhi Liu
    Lihong Wang
    Wei Liu
    Deqin Qiu
    Jingsong He
    Journal of Nonlinear Mathematical Physics, 2017, 24 : 183 - 194
  • [35] Soliton, breather and rogue wave solutions of the nonlinear Schrödinger equation via Darboux transformation on a time-space scale
    Sang, Xue
    Dong, Huanhe
    Fang, Yong
    Liu, Mingshuo
    Kong, Yuan
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [36] Obtaining Solutions of a Vakhnenko Lattice System by N-Fold Darboux Transformation
    Zhang, Ning
    Xu, Xi-Xiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [37] Soliton, breather and rogue wave solutions of the coupled Gerdjikov-Ivanov equation via Darboux transformation
    Ji, Ting
    Zhai, Yunyun
    NONLINEAR DYNAMICS, 2020, 101 (01) : 619 - 631
  • [38] DARBOUX TRANSFORMATION METHOD FOR GIVING SOLITON-SOLUTIONS OF THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION
    CHEN, ZY
    HUANG, NN
    MODERN PHYSICS LETTERS A, 1989, 4 (16) : 1573 - 1579
  • [39] Darboux transformation and soliton-like solutions of nonlinear Schrodinger equations
    Xia, TC
    Chen, XH
    Chen, DY
    CHAOS SOLITONS & FRACTALS, 2005, 26 (03) : 889 - 896
  • [40] Darboux transformation of the generalized mixed nonlinear Schrodinger equation revisited
    Qiu, Deqin
    Liu, Q. P.
    CHAOS, 2020, 30 (12)