Experimental Investigation on Thermal Performance of a PV/T-PCM (Photovoltaic/Thermal) System Cooling with a PCM and Nanofluid

被引:126
|
作者
Sarafraz, M. M. [1 ]
Safaei, Mohammad Reza [2 ]
Leon, Arturo S. [2 ]
Tlili, Iskander [3 ]
Alkanhal, Tawfeeq Abdullah [4 ]
Tian, Zhe [5 ,6 ]
Goodarzi, Marjan [7 ]
Arjomandi, M. [1 ]
机构
[1] Univ Adelaide, Sch Mech Engn, Adelaide, SA, Australia
[2] Florida Int Univ, Dept Civil & Environm Engn, Miami, FL 33199 USA
[3] Majmaah Univ, Coll Engn, Dept Mech & Ind Engn, Al Majmaah 11952, Saudi Arabia
[4] Majmaah Univ, Coll Engn, Dept Mechatron & Syst Engn, Al Majmaah 11952, Saudi Arabia
[5] Ocean Univ China, Sch Engn, Qingdao 266100, Shandong, Peoples R China
[6] Fujian Prov Univ, Fuzhou Univ, Key Lab Fluid Power & Intelligent Electrohydraul, Fuzhou 350108, Fujian, Peoples R China
[7] Ton Duc Thang Univ, Fac Environm & Labour Safety, Sustainable Management Nat Resources & Environm R, Ho Chi Minh City, Vietnam
关键词
photovoltaic; thermal system; multiwalled carbon nanotube; equivalent electrical-thermal power; phase change material; paraffin; BOILING HEAT-TRANSFER; SOLAR COLLECTOR; EXERGY ANALYSIS; PVT SYSTEM; ENERGY; MICROCHANNEL; FLOW;
D O I
10.3390/en12132572
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the present work, an experimental investigation is performed to assess the thermal and electrical performance of a photovoltaic solar panel cooling with multi-walled carbon nanotube-water/ethylene glycol (50:50) nano-suspension (MWCNT/WEG50). The prepared nanofluid was stabilized using an ultrasonic homogenizer together with the addition of 0.1vol% of nonylphenol ethoxylates at pH = 8.9. To reduce the heat loss and to improve the heat transfer rate between the coolant and the panel, a cooling jacket was designed and attached to the solar panel. It was also filled with multi-walled carbon nanotube-paraffin phase change material (PCM) and the cooling pipes were passed through the PCM. The MWCNT/WEG50 nanofluid was introduced into the pipes, while the nano-PCM was in the cooling jacket. The electrical and thermal power of the system and equivalent electrical-thermal power of the system was assessed at various local times and at different mass fractions of MWCNTs. Results showed that with an increase in the mass concentration of the coolant, the electricity and power production were promoted, while with an increase in the mass concentration of the nanofluid, the pumping power was augmented resulting in the decrease in the thermal-electrical equivalent power. It was identified that a MWCNT/WEG50 nano-suspension at 0.2wt% can represent the highest thermal and electrical performance of 292.1 W/m(2). It was also identified that at 0.2wt%, similar to 45% of the electricity and 44% of the thermal power can be produced with a photovoltaic (PV) panel between 1:30 pm to 3:30 pm.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Optimization assessment of the energy performance of a BIPV/T-PCM system using Genetic Algorithms
    Pereira, Ricardo
    Aelenei, Laura
    RENEWABLE ENERGY, 2019, 137 : 157 - 166
  • [42] EXPERIMENTAL INVESTIGATION ON THERMAL PERFORMANCE OF PLATE FIN HEAT SINKS WITH NANO PCM
    Sivapragasaw, Alagesan
    Duraisamy, Senthilkumar
    Raman, Mohan
    THERMAL SCIENCE, 2020, 24 (01): : 437 - 446
  • [43] Experimental Investigation of Thermal Performance in a Vehicle Cabin Test Setup With Pcm in the Roof
    Purusothaman, M.
    Kota, Saichand
    Cornilius, Sam C.
    Siva, R.
    FRONTIERS IN AUTOMOBILE AND MECHANICAL ENGINEERING, 2017, 197
  • [44] Thermal performance of a hybrid cooling plate integrated with microchannels and PCM
    Shen, Junjie
    Chen, Xing
    Xu, Xiaobin
    Kong, Jizhou
    Song, Zebing
    Wang, Xiaolin
    Zhou, Fei
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [45] Design and experimental analysis of a cooling system with erythritol/xylitol PCM thermal energy storage
    Hou, Xu
    Xing, Yuming
    Xu, Ze
    Du, Yi
    Gao, Yuliang
    Yin, Jianbao
    Wang, Shisong
    JOURNAL OF ENERGY STORAGE, 2024, 87
  • [46] PCM thermal storage system for 'free' heating and cooling of buildings
    Osterman, E.
    Butala, V.
    Stritih, U.
    ENERGY AND BUILDINGS, 2015, 106 : 125 - 133
  • [47] NUMERICAL AND EXPERIMENTAL ANALYSIS OF A PCM THERMAL STORAGE SYSTEM
    Sciacovelli, Adriano
    Verda, Vittorio
    ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 6B, 2015,
  • [48] Thermal performance of a PCM thermal storage unit
    Liu, Ming
    Bruno, Frank
    Saman, Wasim
    PROCEEDINGS OF ISES SOLAR WORLD CONGRESS 2007: SOLAR ENERGY AND HUMAN SETTLEMENT, VOLS I-V, 2007, : 2766 - 2771
  • [49] Application of heat pipe in an experimental investigation on a novel photovoltaic/thermal (PV/T) system
    Moradgholi, Meysam
    Nowee, Seyed Mostafa
    Abrishamchi, Iman
    SOLAR ENERGY, 2014, 107 : 82 - 88
  • [50] Experimental study of using both ZnO/water nanofluid and phase change material (PCM) in photovoltaic thermal systems
    Sardarabadi, Mohammad
    Passandideh-Fard, Mohammad
    Maghrebi, Mohammad-Javad
    Ghazikhani, Mohsen
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 161 : 62 - 69