Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes

被引:282
|
作者
Mahajan, Anubha [1 ]
Wessel, Jennifer [2 ,3 ]
Willems, Sara M. [4 ]
Zhao, Wei [5 ]
Robertson, Neil R. [1 ,6 ]
Chu, Audrey Y. [7 ,8 ]
Gan, Wei [1 ]
Kitajima, Hidetoshi [1 ]
Taliun, Daniel [9 ,10 ]
Rayner, N. William [1 ,6 ,11 ]
Guo, Xiuqing [12 ]
Lu, Yingchang [13 ]
Li, Man [14 ,15 ]
Jensen, Richard A. [16 ,17 ,18 ]
Hu, Yao [19 ]
Huo, Shaofeng [19 ]
Lohman, Kurt K. [20 ]
Zhang, Weihua [21 ,22 ]
Cook, James P. [23 ]
Prins, Bram Peter [11 ]
Flannick, Jason [24 ,25 ]
Grarup, Niels [26 ]
Trubetskoy, Vassily Vladimirovich [9 ,10 ]
Kravic, Jasmina [27 ]
Kim, Young Jin [28 ]
Rybin, Denis V. [29 ]
Yaghootkar, Hanieh [30 ]
Mueller-Nurasyid, Martina [32 ,33 ]
Meidtner, Karina [34 ,35 ]
Li-Gao, Ruifang [36 ]
Varga, Tibor V. [37 ]
Marten, Jonathan [38 ]
Li, Jin [39 ]
Smith, Albert Vernon [40 ,41 ]
An, Ping [42 ]
Ligthart, Symen [43 ]
Gustafsson, Stefan [44 ]
Malerba, Giovanni [45 ]
Demirkan, Ayse [43 ,46 ]
Tajes, Juan Fernandez [1 ]
Steinthorsdottir, Valgerdur [47 ]
Wuttke, Matthias [48 ]
Lecoeur, Cecile [49 ]
Preuss, Michael [13 ]
Bielak, Lawrence F. [50 ]
Graff, Marielisa [51 ]
Highland, Heather M. [52 ]
Justice, Anne E. [51 ]
Liu, Dajiang J. [53 ]
Marouli, Eirini [54 ]
机构
[1] Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England
[2] Indiana Univ, Diabet Translat Res Ctr, Dept Epidemiol, Indianapolis, IN 46204 USA
[3] Indiana Univ, Diabet Translat Res Ctr, Dept Med, Indianapolis, IN 46204 USA
[4] Univ Cambridge, Inst Metab Sci, MRC Epidemiol Unit, Cambridge, England
[5] Univ Penn, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
[6] Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England
[7] Natl Heart Lung & Blood Inst, Framingham Heart Study, Framingham, MA USA
[8] Brigham & Womens Hosp, Dept Med, Div Prevent Med, 75 Francis St, Boston, MA 02115 USA
[9] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[10] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
[11] Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, England
[12] Univ Calif Los Angeles, Med Ctr, LABioMed Harbor, Dept Pediat,Inst Translat Genom & Populat Sci, Torrance, CA 90509 USA
[13] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA
[14] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
[15] Univ Utah, Sch Med, Dept Internal Med, Div Nephrol & Hypertens, Salt Lake City, UT USA
[16] Univ Washington, Cardiovasc Hlth Res Unit, Dept Med, Seattle, WA 98195 USA
[17] Univ Washington, Cardiovasc Hlth Res Unit, Dept Epidemiol, Seattle, WA 98195 USA
[18] Univ Washington, Cardiovasc Hlth Res Unit, Dept Hlth Serv, Seattle, WA 98195 USA
[19] Univ Chinese Acad Sci, Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Nutrit Sci, Shanghai, Peoples R China
[20] Wake Forest Univ Hlth Sci, Div Publ Hlth Sci, Dept Biostatist Sci, Winston Salem, NC USA
[21] Imperial Coll London, Dept Epidemiol & Biostat, London, England
[22] London North West Healthcare NHS Trust, Ealing Hosp, Dept Cardiol, London, Middx, England
[23] Univ Liverpool, Dept Biostat, Liverpool, Merseyside, England
[24] Broad Inst, Program Med & Populat Genet, Cambridge, MA USA
[25] Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA 02114 USA
[26] Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn, Ctr Basic Metab Res, Copenhagen, Denmark
[27] Lund Univ, Diabet Ctr, Dept Clin Sci Diabet & Endocrinol, Malmo, Sweden
[28] Korea Natl Inst Hlth, Ctr Genome Sci, Chungcheongbuk Do, South Korea
[29] Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02215 USA
[30] Univ Exeter, Med Sch, Genet Complex Traits, Exeter, Devon, England
[31] Helmholtz Zentrum Munchen German Res Ctr Environm, Inst Genet Epidemiol, Neuherberg, Germany
[32] Ludwig Maximilians Univ Munchen, Univ Hosp Grosshadern, Dept Med 1, Munich, Germany
[33] DZHK German Ctr Cardiovasc Res, Munich Heart Alliance, Partner Site, Munich, Germany
[34] German Inst Human Nutr Potsdam Rehbruecke DIfE, Dept Mol Epidemiol, Nuthetal, Germany
[35] German Ctr Diabet Res DZD, Neuherberg, Germany
[36] Leiden Univ, Med Ctr, Dept Clin Epidemiol, Leiden, Netherlands
[37] Lund Univ, Genet & Mol Epidemiol Unit, Diabet Ctr, Dept Clin Sci, Malmo, Sweden
[38] Univ Edinburgh, Inst Genet & Mol Med, MRC Human Genet Unit, Edinburgh, Midlothian, Scotland
[39] Stanford Univ, Dept Med, Sch Med, Div Cardiovasc Med, Stanford, CA 94305 USA
[40] Iceland Heart Assoc, Kopavogur, Iceland
[41] Univ Iceland, Fac Med, Reykjavik, Iceland
[42] Washington Univ, Sch Med, Dept Genet, Div Stat Genom, St Louis, MO 63110 USA
[43] Erasmus Univ, Med Ctr, Dept Epidemiol, Rotterdam, Netherlands
[44] Uppsala Univ, Dept Med Sci Mol Epidemiol & Sci Life Lab, Uppsala, Sweden
[45] Univ Verona, Dept Neurosci Biomed & Movement Sci, Sect Biol & Genet, Verona, Italy
[46] Leiden Univ, Med Ctr, Dept Human Genet, Leiden, Netherlands
[47] deCODE Genet Amgen Inc, Reykjavik, Iceland
[48] Univ Freiburg, Fac Med, Inst Genet Epidemiol, Med Ctr, Freiburg, Germany
[49] Lille Univ, Lille Pasteur Inst, CNRS, UMR 8199, Lille, France
[50] Univ Michigan, Sch Publ Hlth, Dept Epidemiol, Ann Arbor, MI 48109 USA
关键词
GENOME-WIDE ASSOCIATION; BODY-MASS INDEX; GENETIC ARCHITECTURE; CONFERS SUSCEPTIBILITY; GENOTYPE IMPUTATION; QUALITY-CONTROL; RARE VARIANTS; LOW-FREQUENCY; METAANALYSIS; RISK;
D O I
10.1038/s41588-018-0084-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 x 10(-7)); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio <= 1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
引用
收藏
页码:559 / +
页数:16
相关论文
共 50 条
  • [31] Fine Mapping of Type 2 Diabetes Susceptibility Loci
    Andrew P. Morris
    Current Diabetes Reports, 2014, 14
  • [32] Fine Mapping of Type 2 Diabetes Susceptibility Loci
    Morris, Andrew P.
    CURRENT DIABETES REPORTS, 2014, 14 (11) : 1 - 8
  • [33] Refining breast cancer genetic risk and biology through multi-ancestry fine-mapping analyses of 192 risk regions
    Jia, Guochong
    Chen, Zhishan
    Ping, Jie
    Cai, Qiuyin
    Tao, Ran
    Li, Chao
    Bauer, Joshua A.
    Xie, Yuhan
    Ambs, Stefan
    Barnard, Mollie E.
    Chen, Yu
    Choi, Ji-Yeob
    Gao, Yu-Tang
    Garcia-Closas, Montserrat
    Gu, Jian
    Hu, Jennifer J.
    Iwasaki, Motoki
    John, Esther M.
    Kweon, Sun-Seog
    Li, Christopher I.
    Matsuda, Koichi
    Matsuo, Keitaro
    Nathanson, Katherine L.
    Nemesure, Barbara
    Olopade, Olufunmilayo I.
    Pal, Tuya
    Park, Sue K.
    Park, Boyoung
    Press, Michael F.
    Sanderson, Maureen
    Sandler, Dale P.
    Shen, Chen-Yang
    Troester, Melissa A.
    Yao, Song
    Zheng, Ying
    Ahearn, Thomas
    Brewster, Abenaa M.
    Falusi, Adeyinka
    Hennis, Anselm J. M.
    Ito, Hidemi
    Kubo, Michiaki
    Lee, Eun-Sook
    Makumbi, Timothy
    Ndom, Paul
    Noh, Dong-Young
    O'Brien, Katie M.
    Ojengbede, Oladosu
    Olshan, Andrew F.
    Park, Min-Ho
    Reid, Sonya
    NATURE GENETICS, 2025, 57 (01) : 80 - 87
  • [34] Systematic Fine-Mapping of Association with BMI and Type 2 Diabetes at the FTO Locus by Integrating Results from Multiple Ethnic Groups
    Akiyama, Koichi
    Takeuchi, Fumihiko
    Isono, Masato
    Chakrawarthy, Sureka
    Quang Ngoc Nguyen
    Wen, Wanqing
    Yamamoto, Ken
    Katsuya, Tomohiro
    Kasturiratne, Anuradhani
    Son Thai Pham
    Zheng, Wei
    Matsushita, Yumi
    Kishimoto, Miyako
    Loi Doan Do
    Shu, Xiao-Ou
    Wickremasinghe, Ananda R.
    Kajio, Hiroshi
    Kato, Norihiro
    PLOS ONE, 2014, 9 (06):
  • [35] A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes
    Tatsuhiko Naito
    Ken Suzuki
    Jun Hirata
    Yoichiro Kamatani
    Koichi Matsuda
    Tatsushi Toda
    Yukinori Okada
    Nature Communications, 12
  • [36] A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes
    Naito, Tatsuhiko
    Suzuki, Ken
    Hirata, Jun
    Kamatani, Yoichiro
    Matsuda, Koichi
    Toda, Tatsushi
    Okada, Yukinori
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [37] Fine-mapping and Identification of Two Novel Susceptibility Loci for Type 2 Diabetes through 1000 Genomes and UK10K Imputation in 13,201 Cases and 59,656 Controls
    Bonas, Silvia
    Sanchez, Friman
    Torrents, David
    Mercader, Josep Maria
    DIABETES, 2015, 64 : A459 - A459
  • [38] Erratum to: Fine Mapping of Type 2 Diabetes Susceptibility Loci
    Andrew P. Morris
    Current Diabetes Reports, 2015, 15
  • [39] Identification and fine-mapping of Xo2, a novel rice bacterial leaf streak resistance gene
    Shen Chen
    Aiqing Feng
    Congying Wang
    Junliang Zhao
    Jinqi Feng
    Bing Chen
    Jianyuan Yang
    Wenjuan Wang
    Meiying Zhang
    Kailing Chen
    Weiqin Chen
    Jing Su
    Bin Liu
    Xiaoyuan Zhu
    Theoretical and Applied Genetics, 2022, 135 : 3195 - 3209
  • [40] Identification and fine-mapping of Xo2, a novel rice bacterial leaf streak resistance gene
    Chen, Shen
    Feng, Aiqing
    Wang, Congying
    Zhao, Junliang
    Feng, Jinqi
    Chen, Bing
    Yang, Jianyuan
    Wang, Wenjuan
    Zhang, Meiying
    Chen, Kailing
    Chen, Weiqin
    Su, Jing
    Liu, Bin
    Zhu, Xiaoyuan
    THEORETICAL AND APPLIED GENETICS, 2022, 135 (09) : 3195 - 3209