A facile method to syntheses monodisperse γ-Fe2O3 nanocubes with high magnetic anisotropy density

被引:75
|
作者
Mahmoud, Waleed E. [1 ,2 ]
Al-Hazmi, Faten [1 ]
Al-Noaiser, Fowzia [3 ]
Al-Ghamdi, A. A. [1 ]
Bronstein, Lyudmila M. [1 ,4 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Phys, Jeddah, Saudi Arabia
[2] Suez Canal Univ, Fac Sci, Dept Phys, Ismailia, Egypt
[3] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia
[4] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
关键词
Characterization; X-ray diffraction; Growth from solutions; Hydrothermal crystal growth; Nanomaterials; Magnetic materials; IRON-OXIDE; NANOPARTICLES;
D O I
10.1016/j.spmi.2014.01.009
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The performance of iron oxides, as a clinical tool for hyperthermia application, is strongly depending on their size and structural morphology. The precise control of the iron oxide shape and morphology offers a unique strategy to modify the strength of the dipolar interactions between iron oxide nanoparticles through the engineering of the magnetic surface anisotropy density. This article presents a novel recipe to synthesize gamma-Fe2O3 nanocrystals with cubic morphology. The gamma-Fe2O3 nanocubes were prepared through microwave assisted solvothermal technique. The use of 2,3-oxidosqualene results in iron oxide with cubic shape. The gamma-Fe2O3 nanocubes were analyzed by X-ray diffractometer (XRD), transmission electron microscopy (TEM) and electron diffraction (SAED). The magnetic analysis revealed that the gamma-Fe2O3 nanocubes have a saturation magnetization of 62 emu/g and magnetic surface anisotropy density K-eff =2 x 10(5) erg/cm(3) compared to bulk iron oxide. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [41] Comment on "Engineering Shape Anisotropy of Fe3O4-γ-Fe2O3 Hollow Nanoparticles for Magnetic Hyperthermia"
    Nayak, Pranaba K.
    ACS APPLIED NANO MATERIALS, 2022, 5 (02) : 1715 - 1716
  • [42] Effect of hydrophobic coating on the magnetic anisotropy and radiofrequency heating of γ-Fe2O3 nanoparticles
    Singh, Mandeep
    Ulbrich, Pavel
    Prokopec, Vadym
    Svoboda, Pavel
    Santava, Eva
    Stepanek, Frantisek
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 339 : 106 - 113
  • [43] Dipole-induced magnetic anisotropy in γ-Fe2O3(001) epitaxial films
    Yanagihara, H.
    Hagiwara, J.
    Nakazumi, M.
    Kita, Eiji
    Furubayashi, T.
    APPLIED PHYSICS LETTERS, 2007, 91 (07)
  • [44] Monodisperse Fe3O4 and γ-Fe2O3 Magnetic Mesoporous Microspheres as Anode Materials for Lithium-Ion Batteries
    Xu, Jing-San
    Zhu, Ying-Jie
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (09) : 4752 - 4757
  • [45] Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method
    Jeong, JR
    Lee, SJ
    Kim, JD
    Shin, SC
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (07): : 1593 - 1596
  • [46] Facile synthesis of capped γ-Fe2O3 and Fe3O4 nanoparticles
    Bourlinos, A. B.
    Bakandritsos, A.
    Georgakilas, V.
    Tzitzios, V.
    Petridis, D.
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (16) : 5250 - 5256
  • [47] Preparation and Characterization of Monodisperse α-Fe2O3 Nanostructured Hollow Submicrosphere
    Li Qun-Yan
    Lou Zai-Liang
    Wang Zhi-Hong
    Xie Lin-Yan
    Wei Qi
    Nie Zuo-Ren
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2010, 31 (06): : 1098 - 1102
  • [48] Facile synthesis of capped γ-Fe2O3 and Fe3O4 nanoparticles
    A. B. Bourlinos
    A. Bakandritsos
    V. Georgakilas
    V. Tzitzios
    D. Petridis
    Journal of Materials Science, 2006, 41 : 5250 - 5256
  • [49] Preparation of Monodisperse ε-Fe2O3 Nanoparticles by Crystal Structural Transformation
    Nakaya, Masafumi
    Nishida, Ryo
    Hosoda, Natsumi
    Muramatsu, Atsushi
    CRYSTAL RESEARCH AND TECHNOLOGY, 2017, 52 (11)
  • [50] Magnetic properties of α-Fe2O3 nanopallets
    Ying-Ying Xu
    Long Wang
    Tong Wu
    Rong-Ming Wang
    RareMetals, 2019, 38 (01) : 14 - 19