A facile method to syntheses monodisperse γ-Fe2O3 nanocubes with high magnetic anisotropy density

被引:75
|
作者
Mahmoud, Waleed E. [1 ,2 ]
Al-Hazmi, Faten [1 ]
Al-Noaiser, Fowzia [3 ]
Al-Ghamdi, A. A. [1 ]
Bronstein, Lyudmila M. [1 ,4 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Phys, Jeddah, Saudi Arabia
[2] Suez Canal Univ, Fac Sci, Dept Phys, Ismailia, Egypt
[3] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia
[4] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
关键词
Characterization; X-ray diffraction; Growth from solutions; Hydrothermal crystal growth; Nanomaterials; Magnetic materials; IRON-OXIDE; NANOPARTICLES;
D O I
10.1016/j.spmi.2014.01.009
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The performance of iron oxides, as a clinical tool for hyperthermia application, is strongly depending on their size and structural morphology. The precise control of the iron oxide shape and morphology offers a unique strategy to modify the strength of the dipolar interactions between iron oxide nanoparticles through the engineering of the magnetic surface anisotropy density. This article presents a novel recipe to synthesize gamma-Fe2O3 nanocrystals with cubic morphology. The gamma-Fe2O3 nanocubes were prepared through microwave assisted solvothermal technique. The use of 2,3-oxidosqualene results in iron oxide with cubic shape. The gamma-Fe2O3 nanocubes were analyzed by X-ray diffractometer (XRD), transmission electron microscopy (TEM) and electron diffraction (SAED). The magnetic analysis revealed that the gamma-Fe2O3 nanocubes have a saturation magnetization of 62 emu/g and magnetic surface anisotropy density K-eff =2 x 10(5) erg/cm(3) compared to bulk iron oxide. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] Hydrothermal synthesis of monodisperse α-Fe2O3 nanocubes
    Liu, J.
    Wang, J.
    Li, Y.
    Jia, P.
    Lu, F.
    Chen, K.
    MATERIALS RESEARCH INNOVATIONS, 2015, 19 : 371 - 375
  • [2] Hydrothermal synthesis and characterization of monodisperse α-Fe2O3 nanocubes
    Liu, Jing
    Wang, Jie
    Sun, Jincheng
    Li, Yaru
    Lu, Feng
    MICRO & NANO LETTERS, 2014, 9 (10): : 746 - 749
  • [3] Synthesis of α-Fe2O3 nanocubes
    Patil, Prajakta R.
    Joshi, Satyawati S.
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2007, 37 (06) : 425 - 429
  • [4] Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods
    Tang, B
    Wang, GL
    Zhuo, LH
    Ge, JC
    Cui, LJ
    INORGANIC CHEMISTRY, 2006, 45 (13) : 5196 - 5200
  • [5] Synthesis and Characterization of α-Fe2O3 Nanocubes via Hydrothermal Method
    Ding, Ming
    ASIAN JOURNAL OF CHEMISTRY, 2014, 26 (06) : 1808 - 1810
  • [6] Studies on the magnetic viscosity and the magnetic anisotropy of γ-Fe2O3 powders
    Hou, D.L.
    Nie, X.F.
    Luo, H.L.
    Applied Physics A: Materials Science and Processing, 1998, 66 (01): : 109 - 114
  • [7] Studies on the magnetic viscosity and the magnetic anisotropy of γ-Fe2O3 powders
    Hou, DL
    Nie, XF
    Luo, HL
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (01): : 109 - 114
  • [8] Studies on the magnetic viscosity and the magnetic anisotropy of γ-Fe2O3 powders
    D.L. Hou
    X.F. Nie
    H.L. Luo
    Applied Physics A, 1998, 66 : 109 - 114
  • [9] α-Fe2O3 Nanocubes as High-Performance Anode for Supercapacitor
    Singh, Umisha
    Patra, Mitali
    Chakraborty, Amit K.
    Shukla, Shobha
    Saxena, Sumit
    ADVANCED SUSTAINABLE SYSTEMS, 2025, 9 (02):
  • [10] Magnetocrystalline anisotropy of ε-Fe2O3
    Ahamed, Imran
    Pathak, Rohit
    Skomski, Ralph
    Kashyap, Arti
    AIP ADVANCES, 2018, 8 (05)