On nonregular feedback linearization

被引:20
|
作者
Sun, ZD
Xia, XH
机构
[1] Beijing Univ of Aeronautics and, Astronautics, Beijing, China
关键词
nonlinear control systems; feedback linearization; linear systems; nonregular static feedback; differential geometric methods;
D O I
10.1016/S0005-1098(97)00030-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the use of nonregular (not necessarily regular) static/dynamic state feedbacks to achieve feedback linearization of affine nonlinear systems. First, we provide an example that is nonregular static feedback linearizable but is not regular dynamic feedback linearizable. Then we present some preliminary necessary conditions as well as sufficient conditions for nonregular feedback linearization. The sufficient conditions are checkable, and if they are verified, a linearizing feedback could be calculated following a recursive procedure, provided that the integrations of a set of completely integrable systems are available. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:1339 / 1344
页数:6
相关论文
共 50 条
  • [1] Nonregular feedback linearization: A nonsmooth approach
    Sun, ZD
    Ge, SS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (10) : 1772 - 1776
  • [2] Stabilization of nonholonomic chained systems via nonregular feedback linearization
    Sun, Z
    Ge, SS
    Huo, W
    Lee, TH
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 1906 - 1911
  • [3] Stabilization of nonholonomic chained systems via nonregular feedback linearization
    Sun, ZD
    Ge, SS
    Huo, W
    Lee, TH
    SYSTEMS & CONTROL LETTERS, 2001, 44 (04) : 279 - 289
  • [4] Nonregular feedback linearization for a class of second-order nonlinear systems
    Ge, SS
    Sun, ZD
    Lee, TH
    AUTOMATICA, 2001, 37 (11) : 1819 - 1824
  • [5] Nonregular feedback linearization of a class of multi-input nonlinear control systems
    Nicolau, Florentina
    Respondek, Witold
    Li, Shunjie
    IFAC PAPERSONLINE, 2019, 52 (16): : 286 - 291
  • [6] LINEARIZATION VIA NONREGULAR FEEDBACK OF MULTI-INPUT NONLINEAR CONTROL SYSTEMS
    Nicolau, Florentina
    Respondek, Witold
    LI, Shunjie
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (04) : 2601 - 2630
  • [7] On the construction of a decomposable linearization of nonregular polynomial matrices
    Karampetakis, Nicholas P.
    Karathanasi, Sophia D.
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 2952 - 2957
  • [8] On the problem of feedback linearization
    Califano, C
    Monaco, S
    Normand-Cyrot, D
    SYSTEMS & CONTROL LETTERS, 1999, 36 (01) : 61 - 67
  • [9] ON DYNAMIC FEEDBACK LINEARIZATION
    CHARLET, B
    LEVINE, J
    MARINO, R
    SYSTEMS & CONTROL LETTERS, 1989, 13 (02) : 143 - 151
  • [10] On the robustness of feedback linearization
    da Cunha, Sergio Barros
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (09) : 3318 - 3331