Hyperkernel Construction for Support Vector Machines

被引:1
|
作者
Jia, Lei [1 ]
Liao, Shizhong [1 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China
关键词
D O I
10.1109/ICNC.2008.156
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Construction of kernel functions is crucial for research and application of Support Vector Machines (SVM). In this paper, we propose a combinatorial construction of hyperkernel functions for SVM. We first analyze the under- and over-learning phenomena of common kernel functions. Then, we construct hyperkernel function with a polynomial combination of common kernels, and prove the Mercer condition of the hyperkernel. Finally, we experiment both on simulation and benchmark data to demonstrate the performance of hyperkernel for SVM. The theoretical proofs and experimental results illuminate the validity and feasibility of hyperkernel.
引用
收藏
页码:76 / 80
页数:5
相关论文
共 50 条
  • [31] On transductive support vector machines
    Wang, Junhui
    Shen, Xiaotong
    Pan, Wei
    PREDICTION AND DISCOVERY, 2007, 443 : 7 - +
  • [32] Faster Support Vector Machines
    Schlag, Sebastian
    Sehmitt, Matthias
    Schulz, Christian
    2019 PROCEEDINGS OF THE MEETING ON ALGORITHM ENGINEERING AND EXPERIMENTS, ALENEX, 2019, : 199 - 210
  • [33] On Coresets for Support Vector Machines
    Tukan, Murad
    Baykal, Cenk
    Feldman, Dan
    Rus, Daniela
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2020, 2020, 12337 : 287 - 299
  • [34] Distributed support vector machines
    Navia-Vazquez, A.
    Gutierrez-Gonzalez, D.
    Parrado-Hernandez, E.
    Navarro-Abellan, J. J.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04): : 1091 - 1097
  • [35] Catenary Support Vector Machines
    Kan, Kin Fai
    Shelton, Christian R.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART I, PROCEEDINGS, 2008, 5211 : 597 - 610
  • [36] Properties of support vector machines
    Pontil, M
    Verri, A
    NEURAL COMPUTATION, 1998, 10 (04) : 955 - 974
  • [37] Field Support Vector Machines
    Huang, Kaizhu
    Jiang, Haochuan
    Zhang, Xu-Yao
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2017, 1 (06): : 454 - 463
  • [38] Optimisation on support vector machines
    Pedroso, JP
    Murata, N
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 399 - 404
  • [39] Selective support vector machines
    Seref, Onur
    Kundakcioglu, O. Erhun
    Prokopyev, Oleg A.
    Pardalos, Panos M.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 17 (01) : 3 - 20
  • [40] An introduction to support vector machines
    Schölkopf, B
    RECENT ADVANCES AND TRENDS IN NONPARAMETRIC STATISTICS, 2003, : 3 - 17