Non-separable states in a bipartite elastic system

被引:4
|
作者
Deymier, P. A. [1 ]
Runge, K. [1 ]
机构
[1] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA
来源
AIP ADVANCES | 2017年 / 7卷 / 04期
关键词
CLASSICAL ENTANGLEMENT; COMPUTATION; TOPOLOGY; WAVES;
D O I
10.1063/1.4982732
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We consider two one-dimensional harmonic chains coupled along their length via linear springs. Casting the elastic wave equation for this system in a Dirac-like form reveals a directional representation. The elastic band structure, in a spectral representation, is constituted of two branches corresponding to symmetric and antisymmetric modes. In the directional representation, the antisymmetric states of the elastic waves possess a plane wave orbital part and a 4x1 spinor part. Two of the components of the spinor part of the wave function relate to the amplitude of the forward component of waves propagating in both chains. The other two components relate to the amplitude of the backward component of waves. The 4x1 spinorial state of the two coupled chains is supported by the tensor product Hilbert space of two identical subsystems composed of a non-interacting chain with linear springs coupled to a rigid substrate. The 4x1 spinor of the coupled system is shown to be in general not separable into the tensor product of the two 2x1 spinors of the uncoupled subsystems in the directional representation. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Scattering of non-separable states of light
    Perumangatt, Chithrabhanu
    Salla, Gangi Reddy
    Anwar, Ali
    Aadhi, A.
    Prabhakar, Shashi
    Singh, R. P.
    OPTICS COMMUNICATIONS, 2015, 355 : 301 - 305
  • [2] Pancharatnam phase in non-separable states of light
    Chithrabhanu, P.
    Reddy, Salla Gangi
    Lal, Nijil
    Anwar, Ali
    Aadhi, A.
    Singh, R. P.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (10) : 2093 - 2098
  • [3] Characterizing quantum channels with non-separable states of classical light
    Ndagano B.
    Perez-Garcia B.
    Roux F.S.
    McLaren M.
    Rosales-Guzman C.
    Zhang Y.
    Mouane O.
    Hernandez-Aranda R.I.
    Konrad T.
    Forbes A.
    Nature Physics, 2017, 13 (4) : 397 - 402
  • [4] Characterizing quantum channels with non-separable states of classical light
    Ndagano, Bienvenu
    Perez-Garcia, Benjamin
    Roux, Filippus S.
    McLaren, Melanie
    Rosales-Guzman, Carmelo
    Zhang, Yingwen
    Mouane, Othmane
    Hernandez-Aranda, Raul I.
    Konrad, Thomas
    Forbes, Andrew
    NATURE PHYSICS, 2017, 13 (04) : 397 - 402
  • [5] Non-separable and planar graphs
    Whitney, Hassler
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1932, 34 (1-4) : 339 - 362
  • [6] Non-separable and planar graphs
    Whitney, H
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1931, 17 : 125 - 127
  • [7] Indeterminacy with non-separable utility
    Bennett, RL
    Farmer, REA
    JOURNAL OF ECONOMIC THEORY, 2000, 93 (01) : 118 - 143
  • [8] Who are the non-separable voters?
    Wang, Austin Horng-En
    ELECTORAL STUDIES, 2023, 85
  • [9] SEPARATION IN NON-SEPARABLE SPACES
    ESTILL, ME
    DUKE MATHEMATICAL JOURNAL, 1951, 18 (03) : 623 - 629
  • [10] Non-separable detachments of graphs
    Jackson, B
    Jordán, T
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 87 (01) : 17 - 37