Variable reproducibility in genome-scale public data: A case study using ENCODE ChIP sequencing resource

被引:7
|
作者
Devailly, Guillaume [1 ]
Mantsoki, Anna [1 ]
Michoel, Tom [1 ]
Joshi, Anagha [1 ]
机构
[1] Univ Edinburgh, Roslin Inst, Roslin EH25 9RG, Midlothian, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
Encyclopaedia of DNA element; Chromatin immunoprecipitation; sequencing; Transcription factor; Data integration; TRANSCRIPTION FACTORS; FEATURES; BINDING;
D O I
10.1016/j.febslet.2015.11.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-wide data is accumulating in an unprecedented way in the public domain. Re-mining this data shows great potential to generate novel hypotheses. However this approach is dependent on the quality (technical and biological) of the underlying data. Here we performed a systematic analysis of chromatin immunoprecipitation (ChIP) sequencing data of transcription and epigenetic factors from the encyclopaedia of DNA elements (ENCODE) resource to demonstrate that about one third of conditions with replicates show low concordance between replicate peak lists. This serves as a case study to demonstrate a caveat concerning genome-wide analyses and highlights a need to validate the quality of each sample before performing further associative analyses. (C) 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
引用
收藏
页码:3866 / 3870
页数:5
相关论文
共 50 条
  • [21] Protocol for generating high-quality genome-scale DNA methylation sequencing data from human cancer biospecimens
    Rodger, Euan J.
    Stockwell, Peter A.
    Almomani, Suzan
    Eccles, Michael R.
    Chatterjee, Aniruddha
    STAR PROTOCOLS, 2023, 4 (04):
  • [22] Prediction of metabolites associated with somatic mutations in cancers by using genome-scale metabolic models and mutation data
    Lee, Garyoung
    Lee, Sang Mi
    Lee, Sungyoung
    Jeong, Chang Wook
    Song, Hyojin
    Lee, Sang Yup
    Yun, Hongseok
    Koh, Youngil
    Kim, Hyun Uk
    GENOME BIOLOGY, 2024, 25 (01)
  • [23] Reciprocal causation mixture model for robust Mendelian randomization analysis using genome-scale summary data
    Liu, Zipeng
    Qin, Yiming
    Wu, Tian
    Tubbs, Justin D.
    Baum, Larry
    Mak, Timothy Shin Heng
    Li, Miaoxin
    Zhang, Yan Dora
    Sham, Pak Chung
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [24] Reciprocal causation mixture model for robust Mendelian randomization analysis using genome-scale summary data
    Zipeng Liu
    Yiming Qin
    Tian Wu
    Justin D. Tubbs
    Larry Baum
    Timothy Shin Heng Mak
    Miaoxin Li
    Yan Dora Zhang
    Pak Chung Sham
    Nature Communications, 14
  • [25] High-Performance Data Management for Genome Sequencing Centers Using Globus Online: A Case Study
    Sulakhe, Dinanath
    Kettimuthu, Rajkumar
    Dave, Utpal
    2012 IEEE 8TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE), 2012,
  • [26] ΔFBA-Predicting metabolic flux alterations using genome-scale metabolic models and differential transcriptomic data
    Ravi, Sudharshan A.
    Gunawan, Rudiyanto A.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (11)
  • [27] Genome-Scale Fluxome of Synechococcus elongatus UTEX 2973 Using Transient 13C-Labeling Data
    Hendry, John, I
    Gopalakrishnan, Saratram
    Ungerer, Justin
    Pakrasi, Himadri B.
    Tang, Yinjie J.
    Maranasa, Costas D.
    PLANT PHYSIOLOGY, 2019, 179 (02) : 761 - 769
  • [28] Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens by Using Proteomic Data from a Field Biostimulation Experiment
    Fang, Yilin
    Wilkins, Michael J.
    Yabusaki, Steven B.
    Lipton, Mary S.
    Long, Philip E.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (24) : 8735 - 8742
  • [29] Genome-scale gene function prediction using multiple sources of high-throughput data in yeast Saccharomyces cerevisiae
    Joshi, T
    Chen, Y
    Becker, JM
    Alexandrov, N
    Xu, D
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2004, 8 (04) : 322 - 333
  • [30] Identifying drug response signatures using genome-scale metabolic network analysis of human cell line expression data
    Zielinski, Daniel
    Mo, Monica
    Palsson, Bernhard
    FASEB JOURNAL, 2012, 26