The F-rational signature and drops in the Hilbert-Kunz multiplicity

被引:3
|
作者
Hochster, Melvin [1 ]
Yao, Yongwei [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Georgia State Univ, Dept Mathema & Stat, Atlanta, GA USA
基金
美国国家科学基金会;
关键词
F-rational signature; F-signature; Hilbert-Kunz multiplicity; Frobenius; Cohen-Macaulay; Gorenstein; regular; TIGHT CLOSURE; TEST EXPONENTS; LOCAL-RINGS; LOCALIZATION; MODULES;
D O I
10.2140/ant.2022.16.1777
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) be a Noetherian local ring of prime characteristic p. We define the F-rational signature of R, denoted by r(R), as the infimum, taken over pairs of ideals I (sic) J such that I is generated by a system of parameters and J is a strictly larger ideal, of the drops e(HK)(I, R)) - e(HK)(J, R) in the Hilbert-Kunz multiplicity. If R is excellent, then R is F-rational if and only if r(R) > 0. The proof of this fact depends on the following result in the sequel: Given an m-primary ideal I in R, there exists a positive delta(I) is an element of R+ such that, for any ideal J (sic) I, e(HK)(I, R) - e(HK)(J, R) is either 0 or at least delta(I). We study how the F-rational signature behaves under deformation, flat local ring extension, and localization.
引用
收藏
页码:1777 / 1809
页数:34
相关论文
共 50 条
  • [1] CONTINUITY OF HILBERT-KUNZ MULTIPLICITY AND F-SIGNATURE
    Polstra, Thomas
    Smirnov, Ilya
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 239 : 322 - 345
  • [2] Bertini theorems for F-signature and Hilbert-Kunz multiplicity
    Carvajal-Rojas, Javier
    Schwede, Karl
    Tucker, Kevin
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 1131 - 1153
  • [3] Automating the calculation of the Hilbert-Kunz multiplicity and F-signature
    Johnson, Gabriel
    Spiroff, Sandra
    [J]. SOFTWAREX, 2019, 9 : 35 - 38
  • [4] HILBERT-KUNZ DENSITY FUNCTION AND HILBERT-KUNZ MULTIPLICITY
    Trivedi, V.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (12) : 8403 - 8428
  • [5] F-signature and Hilbert-Kunz multiplicity: a combined approach and comparison
    Polstra, Thomas
    Tucker, Kevin
    [J]. ALGEBRA & NUMBER THEORY, 2018, 12 (01) : 61 - 97
  • [6] BOUNDS ON THE HILBERT-KUNZ MULTIPLICITY
    Celikbas, Olgur
    Dao, Hailong
    Huneke, Craig
    Zhang, Yi
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2012, 205 : 149 - 165
  • [7] HILBERT-KUNZ MULTIPLICITY OF BINOIDS
    Batsukh, Bayarjargal
    Brenner, Holger
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2021, 13 (01) : 1 - 27
  • [8] Asymptotic Hilbert-Kunz multiplicity
    Trivedi, V.
    [J]. JOURNAL OF ALGEBRA, 2017, 492 : 498 - 523
  • [9] Hilbert-Kunz function and Hilbert-Kunz multiplicity of some ideals of the Rees algebra
    Goel, Kriti
    Koley, Mitra
    Verma, J. K.
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (07) : 3066 - 3084
  • [10] Minimal relative Hilbert-Kunz multiplicity
    Watanabe, KI
    Yoshida, KI
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (01) : 273 - 294