F-signature and Hilbert-Kunz multiplicity: a combined approach and comparison

被引:20
|
作者
Polstra, Thomas [1 ]
Tucker, Kevin [2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Univ Illinois, Dept Math, Chicago, IL 60680 USA
基金
美国国家科学基金会;
关键词
F-signature; Hilbert-Kunz multiplicity; CHARACTERISTIC-P; TIGHT CLOSURE; LOCAL-RINGS; RATIONAL-SINGULARITIES; FROBENIUS SPLITTINGS; NOETHERIAN RINGS; TEST IDEALS; PURE RINGS; REGULARITY; CONTINUITY;
D O I
10.2140/ant.2018.12.61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a unified approach to the study of F-signature, Hilbert-Kunz multiplicity, and related limits governed by Frobenius and Cartier linear actions in positive characteristic commutative algebra. We introduce general techniques that give vastly simplified proofs of existence, semicontinuity, and positivity. Furthermore, we give an affirmative answer to a question of Watanabe and Yoshida allowing the F-signature to be viewed as the infimum of relative differences in the Hilbert-Kunz multiplicities of the cofinite ideals in a local ring.
引用
收藏
页码:61 / 97
页数:37
相关论文
共 44 条
  • [1] CONTINUITY OF HILBERT-KUNZ MULTIPLICITY AND F-SIGNATURE
    Polstra, Thomas
    Smirnov, Ilya
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 239 : 322 - 345
  • [2] Bertini theorems for F-signature and Hilbert-Kunz multiplicity
    Carvajal-Rojas, Javier
    Schwede, Karl
    Tucker, Kevin
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 1131 - 1153
  • [3] Automating the calculation of the Hilbert-Kunz multiplicity and F-signature
    Johnson, Gabriel
    Spiroff, Sandra
    [J]. SOFTWAREX, 2019, 9 : 35 - 38
  • [4] CONTINUITY OF HILBERT-KUNZ MULTIPLICITY AND F-SIGNATURE (vol 239, pg 322, 2020)
    Polstra, Thomas
    Smirnov, Ilya
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2022, 245 : 229 - 231
  • [5] Bertini theorems for F-signature and Hilbert–Kunz multiplicity
    Javier Carvajal-Rojas
    Karl Schwede
    Kevin Tucker
    [J]. Mathematische Zeitschrift, 2021, 299 : 1131 - 1153
  • [6] The F-rational signature and drops in the Hilbert-Kunz multiplicity
    Hochster, Melvin
    Yao, Yongwei
    [J]. ALGEBRA & NUMBER THEORY, 2022, 16 (08) : 1777 - 1809
  • [7] HILBERT-KUNZ DENSITY FUNCTION AND HILBERT-KUNZ MULTIPLICITY
    Trivedi, V.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (12) : 8403 - 8428
  • [8] BOUNDS ON THE HILBERT-KUNZ MULTIPLICITY
    Celikbas, Olgur
    Dao, Hailong
    Huneke, Craig
    Zhang, Yi
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2012, 205 : 149 - 165
  • [9] HILBERT-KUNZ MULTIPLICITY OF BINOIDS
    Batsukh, Bayarjargal
    Brenner, Holger
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2021, 13 (01) : 1 - 27
  • [10] Asymptotic Hilbert-Kunz multiplicity
    Trivedi, V.
    [J]. JOURNAL OF ALGEBRA, 2017, 492 : 498 - 523